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 Brain-Computer Interfaces (BCIs) enable the users to directly communicate with machines based 

on various desired purposes through brain signals without moving any body parts. Thus, they have 
become very useful for prostheses, electric wheelchairs, virtual keyboards, and other studies like 

survey applications and emotion classifications. In this study, EEG signal processing was 

performed on the BCI Competition III-3a dataset, which contains motor imagery (MI) signals with 

four classes. Features of the non-stationary EEG signals belonging to three subjects were extracted 
using Power Spectral Density (PSD) with welch method, Wavelet Decomposition (WD), 

Empirical Mode Decomposition (EMD) and Hilbert-Huang Transform (HHT). From extracted 900 

features, feature space dimension reduction was realized using Autoencoder, an unsupervised 

learning algorithm. The average accuracy obtained with Artificial Neural Network (ANN) is 
74.5% for all binary classifications, which is generally a good result because of the non-stationary 

nature of EEG signals. 801 features yielded the best classification performance, obtained using an 

autoencoder with 400 hidden layer neurons. 
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1. Introduction 

The BCI is a direct communication path with or without 

a cable, which allows bi-directional information flow 

between the brain and an external device, where the brain 

signals are information carriers. BCIs are often used to 

research, map, support, increase or repair human cognitive 

or sensory-motor functions. BCIs are used in many 

applications, such as prostheses and electric wheelchairs, 

virtual keyboards, survey applications, and emotion 

classifications. 

Electroencephalography (EEG) is the most used for BCI 

applications and physiological signals, which are electrical 

potential representations of brain signals. EEG signal is a 

harmless signal to human health and is more advantageous 

and easier to use than other techniques that help us obtain 

and analyze brain signals [1-4]. Motor Imagery (MI) 

signals are the EEG signals that occur when the user of the 

BCI system imagines the necessary movement of a body 

part to use a specific purpose machine [5]. 

In literature, Royer et al. conducted a study on the 

control of a virtual helicopter in a three-dimensional space 

using MI signals with four classes: right-hand movement 

to go right, left-hand movement to go left, both hands up 

to rise, and both hands down to descend or rest. %67 of 

flight time was closer to the intended path while using BCI 

in this study [6]. In another study, Bhattacharyya et al. 

designed an Interval Type-2 Fuzzy classifier to classify 

EEG signals obtained by imagining a total of five wrist and 

finger movements presented with audio and visual 

stimulation. They extracted Extreme Energy Ratio (EER) 

features and obtained 86.45% and 78.44% accuracies for 

offline and online classifications, respectively [7]. Ang 

and Guan identified a strategy for detecting MI signals for 

control and rehabilitation purposes. 29 of 34 chronic stroke 

patients were suitable for BCI use. Within the calibration 

sessions used for training and subsequent test sessions, 

subjects were assigned two or more MI tasks, such as left- 

and right-hand movements. The accuracy rates obtained 

from the signal analyzed by the common spatial pattern 

filter bank were 79.8% for offline and 69.5% for online 

classifications [8]. Mahajan and Bansal developed a neuro-

rehabilitation control application that processes EEG 

signals through Arduino. EEG signals were obtained over 

a total of 5 sessions which consisted of 20s periods, from 

each of the three male and seven female subjects. Peak 

amplitude values were used as features in the signals, 

classified as comfortable condition and blink. If the 
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maximum peak amplitude value exceeds the threshold 

value, the led lamp is turned on with Arduino Uno, 

corresponding to the blink [9]. Mistry et al. conducted a 

study to realize wheelchair control using visual triggering 

for individuals with motor cortex disabilities. The signal 

intensity was determined by calculating the target 

frequencies, mean values, and SNR values with Fourier 

transform of EEG signals received from the parietal lobe 

and occipital lobes of 4 individuals with visual triggers 

consisting of 4 different vibration speeds (7 Hz, 9 Hz, 11 

Hz, and 13 Hz). From 7 Hz LED for left, 9 Hz LED for 

forward, 11 Hz LED for right, and 13 Hz LED for 

backward, only two LEDs were active each time, first right 

and left decision, then forward and backward decision. The 

average accuracy was 79.4%, and a simple path follow-up 

using all the classes took 5 minutes and 9 seconds [10]. 

Athif et al. introduced a new method called WaveCSP, 

which combines wavelet decomposition and Common 

Spatial Pattern (CSP) concepts to extract features for more 

robust classification of EEG signals. The classification of 

the right-hand and left-hand MI signals has given 63.5% 

average accuracy with the k-Nearest Neighbor (kNN) 

classifier [11]. A new network structure called QNet was 

proposed by Fan et al., which learns the attention weight 

of EEG channels, time points, and feature maps. The 

method provided an 82.9% accuracy rate for the 

classification of right-hand and left-hand MI signals [12]. 

Xiao et al. proposed a channel selection algorithm based 

on coefficient-of-variation for right-hand and left-hand MI 

EEG signal classifications by dividing channels into 

different categories according to their contributions to the 

feature extraction process. They have achieved an average 

accuracy of 74.30% [13]. As seen from the literature, many 

studies use different features and methods for various BCI 

control applications. However, the accuracy results are not 

at the desired levels yet. Thus, BCI technology needs more 

effective feature extraction, feature selection, and 

classification algorithms for more accurate daily use. 

This study used the IIIa dataset consisting of four class 

MI EEG signals created for the BCI Competition in the 

BCI laboratory of Graz University of Technology, Austria. 

We have extracted features using Power Spectral Density 

(PSD) with the welch method, Wavelet Decomposition, 

Empirical Mode Decomposition (EMD), and Hilbert-

Huang Transform (HHT). The dimensions of the feature 

space increase if there are more electrode channels in an 

EEG cap and if more feature extraction methods are used 

to represent a signal. Thus, in this study, the feature space 

was reduced using Autoencoder neural network, an 

unsupervised learning algorithm [14]. The classification 

was realized with 5-Fold Cross-Validated ANN. The 

autoencoder hidden layer sizes were changed to see the 

effects of different size feature spaces on the binary 

classification of EEG signals. It was seen that the 

Autoencoder could reduce the size of the existing feature 

space and represent the feature space more effectively. 

2. Material and Methods 

2.1. BCI Competition III-3a Dataset 

BCI Competition III-3a dataset was obtained in the BCI 

laboratory of Graz University of Technology, Austria. The 

dataset contains MI signals with four classes: right-hand 

movement to go right, left-hand to go left, tongue 

movement to go up, and feet movement to go down [15, 

16]. The sequence of the events in the dataset was shown 

to 3 subjects according to the paradigm shown in Figure 1. 

 

Figure 1. The paradigm of BCI Competition IIIa Dataset [15, 
16] 

The EEG signals of the three subjects based on the 

designated paradigm were obtained from a 60-electrode 

EEG Cap [15, 16]. The electrode positions corresponding 

to various regions of the brain are shown in Figure 2. In 

this study, EEG signals that belong to 9 electrode channels 

were used, which were 6, 8, 20, 22, 28, 31, 34, 48, and 50 

electrode placements. These electrodes correspond to the 

brain's frontal lobe, motor cortex, and parietal lobe, where 

activities are related to control applications. 

 

Figure 2. Electrode Positions of a 60 Electrode Cap [15, 16]. 

The EEG segments for four classes belonging to the 

first, second, and third subjects were 360, 240, and 240, 

respectively. Half of these segments are labeled, and the 

other half is unlabeled [15, 16]. In this study, the labeled 

segments consisting of 2560 samples were used. For 

segments with fewer than 2560 samples, the averages of 

the samples were taken to complete the missing data. A 

total of 409 labeled segments that were used in this study 

were 175, 118, and 116 for the first, second, and third 

subjects, respectively. 

2.2. EEG Signal Processing and Feature Extraction 

Before we used the signals from the stated nine 

electrodes, we applied the Common Average Reference 

(CAR) method, subtracting the average value of all 
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electrodes from the signals of all electrodes. In addition, 

baseline correction is applied for each electrode separately 

by subtracting the average of the signal from the signal 

itself belonging to one electrode.  

Then, in order to protect the signals' significant parts 

and reveal their outline, the 9th-degree db4 wavelet 

decomposition was applied, and the detail coefficients of 

the four lowest levels were subtracted from the main 

signal; thus, filtering was performed. After filtering the 

signals, we separated the signals into their bands (delta, 

theta, alpha, beta, gamma) using elliptic filters to extract 

features defining them. An example of EEG bands 

belonging to the first class (right hand) from the first 

electrode of the first subject is shown in Figure 3. 

 
Figure 3. EEG Bands belonging to Class-1of the first electrode 

of the first subject 

Welch method, which is the averaged and modified 

version of the periodograms [17], was applied to the 

signals of each electrode channel, and Power Spectral 

Density (PSD) values were found. These values were 

calculated for each EEG band separately, and the mean, 

standard deviation, skewness, kurtosis, and logarithmic 

energy entropy values of PSDs were used as frequency 

domain features.  

Then, the 9th-degree Daubechies-db4 wavelet 

coefficients were obtained because wavelet transform can 

give information about the changes in a signal or an image 

and the time location of the occurring changes, unlike 

Fourier transform, which loses the time information [18]. 

Mean, standard deviation, skewness, kurtosis, and 

logarithmic energy entropy values of wavelet coefficients 

were calculated separately for each EEG band and used as 

time-frequency features. 

 Empirical Mode Decomposition (EMD) method 

considers the oscillations in signals in a very local manner 

[19]. The decomposition is based on the understanding that 

the signal can contain many simple oscillations at 

significantly different frequencies superimposed on each 

other [20]. The results of the EMD method are components 

defined as Intrinsic Mode Functions (IMF), which define 

the oscillations in a signal. These IMFs must satisfy the 

following conditions: The number of extremes and zero-

crossings must either be equal or differ at most by 1, and 

the mean value of the enveloping signals defined as local 

maxima and local minima must be zero at any given data 

point [20]. After applying EMD with piecewise cubic 

Hermite interpolating polynomial method for envelope 

construction to all EEG bands, the mean, standard 

deviation, skewness, kurtosis, and Shannon entropy values 

were calculated for the resulting maximum 5 IMFs and 

used as time-frequency features. 

Hilbert-Huang Transform (HHT) reveals the Hilbert 

spectrum of a signal sampled at a specific frequency and 

specified by IMFs resulting from EMD. HHT is useful for 

analyzing signals that contain a mixture of signals whose 

spectral components changes in time. The time-frequency 

representation of a signal with HHT does not contain 

spurious oscillations. Thus, the signal is in its more natural 

and physically meaningful form [20]. After applying HHT 

to all EEG bands, the mean, standard deviation, skewness, 

kurtosis, and Shannon entropy values were calculated and 

used as time-frequency features. 

As a result of the feature extraction process, a total of 

900 features were obtained from 5 EEG bands of 9 

electrode channels belonging to 3 subjects. Five statistical 

calculations from 5 EEG bands of 9 channels for one 

feature extraction method result in 5x5x9 = 225 features, 

resulting in 225x4 feature extraction methods total of 900 

features. 

2.3. Feature Space Dimension Reduction and 
Classification 

After obtaining the total amount of 900 features, we 

have decided to reduce the feature space dimension 

because 900 features need lots of computation time. The 

process should be fast and effective. So, we have used 

Autoencoder neural networks for feature space dimension 

reduction. Autoencoders are unsupervised learning 

algorithms that automatically learn features from 

unlabeled data by applying backpropagation and setting 

the number of target values equal to the number of inputs. 

Autoencoders are also useful for discovering interesting 

structures in the data by placing constraints on the 

network, such as limiting the number of hidden units [14]. 

Suppose the data is not reconstructed at the end of the 

procedure. In that case, the encoder and decoder weights 

and biases based on hidden layer size can be used as a 

reduced version of the feature space dimension. 

We have selected 50, 100, 150, 200, 250, 300, 350, 400, 

and 450 neurons for a hidden layer of Autoencoder. The 

autoencoders used the Scaled Conjugate Gradient function 

for backpropagation and Mean Squared Error with L2 and 

Sparsity Regularizers for performance function. The 

encoder weights, decoder weights, and decoder biases 

were used as feature space which consists of 101, 201, 301, 

401, 501, 601, 701, 801, and 901 features for all hidden 

layers, respectively. 

After reducing the feature space dimension, we have 

classified the EEG samples belonging to 3 subjects divided 

into four categories: right-hand, left-hand, tongue, and 
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feet. The classifications were realized as binary. Of the 409 

labeled samples in total, there are 101 samples from the 

first category (right-hand), 100 samples from the second 

category (left-hand, 104 samples from the third category 

(tongue), and, finally, 104 samples from the fourth 

category (feet). The classifier is a pattern recognition ANN 

with 200 hidden neurons trained with a resilient 

backpropagation algorithm. The ANN was applied with 5-

fold cross-validation. The 409 samples were divided 

randomly as 70% for training, 15% for testing, and 15% 

for validation. The transfer functions of the network were 

chosen as a logarithmic sigmoid function for the input 

layer and a tangent sigmoid function for the output layer. 

The performance function was Mean Squared Error 

function. The flow chart of the study is shown in Figure 4. 

 

Figure 4. The flow chart of the study. 

3. Results and Discussion 

After all the binary classifications were realized, the 

testing accuracy rates based on different feature spaces 

obtained using autoencoders are given in Table I. The 

results are shown as a different representation in Figure 5, 

where the changes in results can be seen based on the 

change in feature space size. 

According to the results shown in Table I, the original 

feature space and feature space with 901 elements obtained 

with autoencoders have similar accuracy rates. The 

maximum accuracy rate of 74.5% was obtained with 801 

features. However, features of 401 and 501 obtained with 

autoencoders with 200 and 250 neurons are also close to 

the maximum accuracy rate of 71.5% and 70.8%, 

respectively. 

On the other hand, right-hand and left-hand 

classification is the most classified classification pair in 

literature, and the maximum accuracy rate obtained for this 

pair is 86.7% with 401 features. The maximum accuracy 

of 80.6% and 90.3% for right-hand and tongue, and right-

hand and feet pairs, respectively, were obtained with 801 

features. For the left-hand and tongue pair, the maximum 

accuracy of 83.9% was obtained with 701 features from 

the Autoencoder's 350 neurons. Finally, 80.6% maximum 

accuracies were obtained with 501 features of the 

Autoencoder's 250 neurons for the left-hand and feet pair 

and tongue and feet pair. 

 
Figure 5. Binary classification results of different feature 

spaces were obtained using an Autoencoder with a different 
number of neurons in the hidden layer. 

The lowest standard deviation value of binary 

classifications was 5.9, obtained for 601 features, which 

shows that the change in accuracies for all binary 

Table 1. Testing accuracy rates (%) of binary classifications based on feature spaces obtained using autoencoders with different hidden 
layer sizes. (RH: Right-Hand, LH: Left-Hand, T: Tongue, F: Feet) 

Classification Categories 
Feature Space Size Created with Autoencoder Original 

Feature 

Space (900) 
101 201 301 401 501 601 701 801 901 

RH-LH 70.0 70.0 76.7 86.7 73.3 66.7 53.3 56.7 66.7 50.0 

RH-T 61.3 58.1 67.7 71.0 64.5 71.0 54.8 80.6 67.7 51.6 

RH-F 54.8 83.9 77.4 58.1 71.0 67.7 83.9 90.3 58.1 67.7 

LH-T 58.1 58.1 61.3 51.6 54.8 61.3 83.9 67.7 45.2 64.5 

LH-F 80.6 58.1 54.8 74.2 80.6 71.0 48.4 77.4 67.7 54.8 

T-F 58.1 51.6 54.8 87.1 80.6 80.6 54.8 74.2 54.8 77.4 

Average Acc. (%) 63.8 63.3 65.5 71.5 70.8 69.7 63.2 74.5 60.0 61.0 

Std. Dev. 8.9 10.7 9.3 13.3 9.1 5.9 14.8 10.5 8.3 9.8 
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classifications is less than for other feature space sizes. The 

average accuracy for 601 features was 69.7%, obtained 

using an autoencoder with 300 hidden layer neurons. The 

results show that the Autoencoder does not only change 

the size of feature space but changes the weights of the 

features because the average accuracy results change 

randomly. 

4. Conclusion 

The maximum average accuracy for all binary 

classifications was 74.5%, with 801 features obtained 

using an autoencoder with 400 hidden layer neurons. This 

result is acceptable because the nature of the signal is non-

stationary, so it is hard to characterize EEG signals. 

However, the original feature space has 900 features, so 

there is not much reduction of the feature space using an 

autoencoder. On the other hand, the feature space with 401 

features is the closest one, with 71.5% accuracy. Also, the 

literature's most used classification pair of right-hand and 

left-hand has an 86.7% accuracy rate with 401 features. 

This study shows that the average accuracy rates of 

binary classifications for features obtained using 

autoencoders with different size hidden layers change 

randomly. Thus, it can be said that an autoencoder does not 

change only the feature space size but the weights of 

features while representing the original feature space in 

another way. 

In another study, the most useful features can be found 

in the original feature space and use an autoencoder to 

represent them for a more compact and effective feature 

space. 

Author's Note 

Part of this work was presented at the 9th International 

Conference on Advanced Technologies ICAT'2020 Istanbul, 

Turkiye. 
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