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 The automatic detection of diseases in tomato leaves significantly contributes to tomato production 

and enables farmers to manage these issues more effectively. Tomatoes are a crucial commercial 

crop for local markets and exports, representing a significant agricultural sector in our country. 

Diseases affecting tomato leaves directly influence tomato yield and quality, making early 

detection and intervention paramount. Our study aims to address tomato losses due to leaf diseases 

using computer technology. Recently, Convolutional Neural Networks (CNN) have been 

employed in various fields including agriculture, military, robotics, and medicine for 

classification, object detection, and segmentation tasks. The integration of computer vision and 

image processing with deep learning architectures has led to notable advancements in these areas, 

offering solutions with higher accuracy and reducing human error. In our research, a dataset was 

created using images of tomato leaf diseases selected from Kaggle. Algorithms such as k-Nearest 

Neighbors (KNN), Random Forest (RF), Logistic Regression (LR), Support Vector Machine 

(SVM), and Neural Networks (NN) were applied using Orange, a data visualization and analysis 

software. Moreover, a custom algorithm developed in Python demonstrated the highest accuracy. 

while the highest classification accuracy of classification made with machine learning algorithms 

was 95.6%, the classification accuracy was achieved about 96% with the developed deep learning 

model. This system was integrated into an Amazon Web Services (AWS) Lambda function, 

subsequently utilized in a mobile application developed using Flutter for the UI and Dart for 

backend, ensuring connectivity with the Lambda function. 
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1. INTRODUCTION 

Agriculture is an indispensable element in meeting the 

global food needs of humanity, playing a pivotal role in the 

economic development of nations [1]. It also holds a 

critical role in contributing to the development of countries 

economically [2]. The substantial increase in population 

densities has escalated the need for food security [3]. 

Nonetheless, to meet this demand, the agricultural sector 

is in continuous need of innovative solutions and effective 

methods. 

Due to their high nutritional value, tomatoes play a 

significant role in agricultural trade and production [4]. 

They are of great importance among vegetable crops 

worldwide, with their production increasing visibly each 

year. With the rising demand, farmers face losses due to 

diseases [2]. 

It is anticipated that approximately 40% of crops are lost 

due to plant diseases [5]. Similarly, leaf diseases in tomato 

cultivation cause significant losses in production. The 

early diagnosis of these diseases is of critical importance 

for sustaining efficiency and sustainability in the 

agricultural economy. Previous research indicates that 80-

90% of plant diseases manifest on leaves [6, 7], thus, 

diagnoses are commonly made by examining leaf 

symptoms. However, the accuracy and precision of these 

diagnoses require extensive knowledge and experience, in 

addition to incurring greater time and costs [8]. 

Incorrect use of agricultural pesticides for disease 

treatment can increase the resistance of pathogens 

affecting plants, making the accurate diagnosis of plant 

diseases extremely important. In today’s world, where 

mobile technology is prevalent in many aspects of our 

lives, this article presents the detection of diseases in 

tomato leaves via a mobile application, enabling producers 

themselves to control the quality and efficiency of tomato 

production. Pre-trained machine learning models and deep 

learning algorithms are stored on the server. Through our 

application, producers can photograph diseased leaves 

with their mobile phones and upload these images to the 

server. Then, the server performs analyses to diagnose the 
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disease. The results are provided back to the user as a 

decision support mechanism for determining tomato leaf 

diseases. In short, the application performs disease 

prediction through an application interface using a pre-

trained model via AWS Lambda. Figure 1 illustrates the 

operational logic of the application.  

 

 

Figure 1.  Block diagram of the study 

2. Related Work 

During the literature review, articles focusing on the 

detection of diseases in tomato leaves were examined. 

Additionally, prior studies directly related to our research 

scope and those indirectly contributing to this topic were 

included. 

Agarwal et al., utilized the Plant Village dataset for the 

detection of diseases on tomato leaves in their study, 

employing a Convolutional Neural Network (CNN)-based 

model for disease detection and classification. This model 

comprises 3 convolutional, 3 max-pooling, and 2 fully 

connected layers, achieving an average accuracy rate of 

91.2% across 9 diseases and one healthy class [9]. 

Ashok et al., developed a method using deep learning 

techniques for tomato leaf disease detection, preferably 

using plant images. They proposed a CNN algorithm for 

hierarchical feature extraction, reaching a 98% accuracy 

level when tested on OpenCV  [10]. 

Kaushik et al., developed a deep CNN model using 

PyTorch to classify 6 tomato diseases. They validated their 

test dataset with parameters obtained from the ResNet-50 

model, enhancing the model's accuracy to 97% through 

data augmentation [11]. 

Jiang et al., used 1000 photographs for three different 

tomato leaf diseases. They replaced ResNet-50's activation 

function with Leaky-ReLU and altered the kernel size of 

the first convolutional layer to 11x11, achieving a 98% 

accuracy rate [12]. 

Das et al., created a dataset for a tomato leaf disease 

detection system comprising 7 diseased and 1 healthy 

tomato leaf image. The dataset includes 60 features 

derived from each image. Among the experiments 

conducted with SVM, RF, and LR algorithms, the highest 

accuracy rate of 87.6% was obtained by SVM [13]. 

Wang and Liu focused on the development of the 

YOLOv3 model for detecting complex natural 

environment tomato anomalies in their study. The 

developed YOLO-Dense model achieved the highest 

accuracy of 96.41% compared to SSD, Faster R-CNN, and 

YOLO V3 models [14]. 

Kibriya et al., employed two CNN-based models for 

diagnosing tomato leaf diseases, using the Plant Village 

dataset containing 10735 leaf images. VGG16 achieved 

98% accuracy, while GoogLeNet reached 99.23% 

accuracy [15]. 

Trivedi et al., used CNNs to classify tomato diseases, 

utilizing a dataset of 3000 images comprising 9 types of 

diseased tomato leaves and one healthy leaf on Google 

Colab. After processing the CNN model with varying 

hyperparameters, they achieved an accuracy rate of 

98.49% [7].  

Kursun et al., demonstrates that using the U-Net 

architecture for segmenting agricultural images, followed 

by classification with deep learning models like 

DenseNet201, significantly improves the accuracy of 

detecting plant diseases in bean plants, achieving up to 

100% accuracy [16]. 

Anandhakrishnan and Jaisakthi used a total of 18,160 

images of tomato leaf diseases from the Plant Village 

dataset, allocating 60% for training and 40% for testing. 

The DCNN (Deep Convolutional Neural Network) model 

achieved an accuracy rate of 98.4% in the test set [17]. 

Rahman et al., collected their dataset from different 

tomato fields in Pakistan for their study on tomato leaf 

disease detection. Using the Gray Level Co-occurrence 

Matrix (GLCM) GLCM algorithm to calculate 13 different 

features, they classified tomato diseases with the Support 

Vector Machine (SVM), showing that the method works 

with 100% accuracy for healthy leaves, 95% for early 

blight, 90% for Septoria leaf spot, and 85% for late blight 

[18]. 

Janarthan et al., used a total of 18160 images for the 

detection of 10 different diseases in their project, 

employing Adam Stochastic optimization with Python's 
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OpenCV library [19]. 

R. Sujatha et al., prepared 609 photographs for training 

with 10-fold cross-validation, focusing on a performance 

comparison between ML and DL algorithms. They 

considered SVM, RF, and SGD as machine learning 

algorithms, and Inception-V3, VGG-16, and VGG-19 as 

deep learning algorithms, with the highest accuracy rate of 

89.5% achieved by VGG-16 [20]. 

M. Sardogan et al., used a total of 500 photographs, 400 

for training and 100 for testing, in their research. They 

employed ReLU as the activation function and the LVQ 

algorithm for classification and supervised learning, 

achieving an average accuracy rate of 86% [21]. 

Harakannanavar et al., used contour tracking for 

boundary extraction of leaf samples. Furthermore, 

Discrete Wavelet Transform (DWT), Principal 

Component Analysis (PCA), and GLCM were used for 

feature extraction, and SVM, KNN, CNN were used for 

classification, with CNN achieving the highest accuracy 

rate of 99.6% [22]. 

De Luna et al., worked on three different diseases in a 

tomato species named Diamete Max: Phoma Rot, Leaf 

Miner, and Target Spot, using approximately 5000 images 

in total. Classification with DCNN and anomaly detection 

with F-RCNN were conducted, finding the anomaly test's 

confidence score to be 80%. The classification and disease 

recognition accuracy rate was found to be 95.75%, and 

diseases in tomato leaves were captured with 91.67% 

accuracy using an automatic image capture system [23]. 

The literature review indicates that some studies have 

provided high accuracy in performance. However, the 

portability of these systems has been found lacking. The 

mission of this project is to develop smaller and faster 

versions of existing disease diagnosis algorithms and make 

these versions usable on small-scale devices like mobile 

phones. 

3. Materials and Methods 

Agriculture plays a critical role in the survival of 

humanity on Earth, serving as both a primary source of 

nourishment and a cornerstone of economic growth for 

regions. However, it is well-documented that plants are 

susceptible to adverse effects from various factors, 

including bacteria, viruses, fungi, or the excessive use of 

agricultural chemicals. The misdiagnosis of diseases 

affecting agricultural products often leads to the 

unnecessary and excessive application of pesticides. This 

practice contributes to the development of resistant 

pathogen strains, incurs higher costs, and exacerbates the 

frequency of outbreaks, resulting in significant financial 

and environmental losses [24, 25].   

In response to these challenges, our study has developed 

a dataset using photographs of tomato leaf diseases 

selected from Kaggle. Through the application of KNN, 

RF, LR, SVM, and NN algorithms via Orange, an open-

source data visualization, and analysis tool, we have 

explored various computational approaches. Additionally, 

a custom algorithm was crafted using the Python 

programming language and applied to the same dataset to 

enhance diagnostic accuracy. Subsequently, this algorithm 

was integrated into an Amazon Web Services (AWS) 

Lambda function, which served as a backend for a newly 

developed mobile application. The mobile application, 

designed to facilitate the detection of tomato leaf diseases, 

connects seamlessly with the AWS Lambda function, 

embodying our commitment to leveraging advanced 

technologies for sustainable agricultural practices. 

3.1. Raw Dataset 

Kaggle is a community of data scientists and machine 

learning practitioners. It actively organizes competitions 

with prizes for various projects. During the initial 

development stages, a small-scale dataset from Kaggle 

was chosen. A dataset composed of tomato leaves found 

on Kaggle (Kaustubh B., 2020) was utilized. This dataset 

contains 10 classes, out of which only 5 were subjected to 

testing. As the testing process continued, datasets obtained 

by different Kaggle users (Ashish Motwani et al., 2023; 

Nouaman Lamhari et al., 2019) were merged with the 

initial dataset. This integration allowed for an examination 

of the model's performance on dense data sets. 

The preferred 4 different tomato plant leaf diseases are 

given together with their descriptions. 

Bacterial Spot: Bacterial spot is a disease caused by the 

bacterium Xanthomonas campestris pv. vesicatoria. It 

affects both peppers and tomatoes, manifesting as circular 

or irregularly shaped lesions on the leaves. In advanced 

stages, these lesions become slightly sunken, dark brown, 

and scab-like in texture. If numerous, the spots can 

coalesce and grow together. The primary consequences 

include leaf lesions, leaf drop, fruit lesions, and 

significantly, a severe reduction in marketable fruit yield. 

This disease can inflict substantial economic damage [26, 

27]. 

Late Blight: The disease caused by the fungus 

Phytophthora infestans was first observed in 1843 in 

Philadelphia and New York. Late blight can easily affect 

leaves other than the initially infected ones. It begins as 

irregular greenish spots on the fruit, giving it the 

appearance of frost damage. In humid conditions, a white, 

fluffy growth appears on the underside of leaves. Infected 

fruits rapidly become foul-smelling masses. Late blight 

typically occurs in mid to late August during cool nights. 

This fungus also affects potatoes and can spread from 

potatoes to tomatoes. Without intervention, it can 

devastate all plants in a cultivation area within 7 to 10 days 

[28, 29]. 

Powdery Mildew: First observed in the United Kingdom 

in 1986, powdery mildew has since spread worldwide. 



Yildiz et al., Intelligent Methods in Engineering Sciences 3(1): 022-036, 2024 

- 25 - 

 

This fungal infection, commonly known as powdery 

mildew, affects the above-ground parts of the plant but 

does not infect the fruit. It causes white lesions on leaves 

and significantly reduces the amount of marketable 

produce, despite not spreading to the fruit [30, 31].  

Early Blight: Host invasion is facilitated by enzymes 

that break down the host's cell wall and a series of toxins 

that kill host cells and allow the pathogen to feed on the 

dead cells. Lesions become visible 2-3 days after infection, 

and spore production occurs within 3-5 days. This disease, 

caused by the fungus Alternaria solani, leads to the 

formation of spots on leaves, stems, fruits, and petioles 

[32]. 

3.2. Machine Learning Models 

In the realm of precision agriculture, the deployment of 

machine learning algorithms stands at the forefront of 

innovative approaches to enhance crop health monitoring 

and disease management. This study leverages a suite of 

sophisticated machine learning algorithms, namely k-

Nearest Neighbors (KNN), Random Forest (RF), Logistic 

Regression (LR), Support Vector Machine (SVM), and 

Neural Networks (NN), to automate the detection and 

classification of diseases in tomato plant leaves. These 

algorithms are selected for their proven efficacy in pattern 

recognition and classification tasks, promising to 

significantly improve the accuracy and efficiency of 

disease diagnosis in agricultural practices. The following 

sections will delve into the theoretical underpinnings and 

practical applications of each algorithm, illustrating their 

contributions to the advancement of agricultural 

technology [33].  

Logistic Regression (LR): Logistic Regression is a 

paramount statistical and data mining technique utilized by 

statisticians and researchers for the analysis and 

classification of datasets. It offers a method to classify 

according to probability rules by calculating the estimated 

values of the dependent variable as probabilities. Some of 

the principal advantages of LR include its inherent 

capability to provide probabilities and its applicability to 

multi-class classification problems [34, 35]. 

K-Nearest Neighbors (KNN): KNN is an algorithm 

used for classification in supervised learning. The 

algorithm initially selects a reference value as the number 

of data points close to the desired data (K value) and then 

finds the points closest to it using the Euclidean formula. 

For instance, if we have two classes, A and B, and we input 

new data with K=10, if the algorithm finds 6 instances of 

B and 4 of A, then the new data point is classified as 

belonging to class B (Figure 2). It performs exceptionally 

well with data classes where the relationship between 

variables is complex [36, 37]. 

 

Figure 2. The KNN Model 

Random Forest (RF): Fundamentally, Random Forest 

is constituted by the collective use of a series of decision 

trees. Decision trees attempt to divide the dataset using a 

tree structure and eventually reach a conclusion or 

prediction (Figure 3). The tree structure begins at the root 

node, continuing to split into branches according to certain 

criteria. Each branch represents a decision point and may 

culminate in a class label or prediction value. RF is utilized 

to assess the outcome of all decision trees to reach a more 

accurate conclusion [33, 38-40]. 

 

Figure 3. Decision Tree 

Support Vector Machine (SVM): SVM is a machine 

learning algorithm predominantly used for classification 

problems. It determines decision boundaries to classify 

data accordingly. SVM can operate with boundaries in 

various dimensions, such as lines, planes, or hyper-planes. 

Class labels are used to determine which class data points 

belong to, based on their position relative to these 

boundaries (Figure 4). SVM is also applicable to non-

linear datasets [41, 42]. 
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Figure 4. SVM Model 

Neural Network (NN): A model that emulates the 

functioning system of the human brain. Currently, 

"feedforward" forms are predominantly used. Data enters 

the network through the input layer. Each node in every 

layer has its own weight multiplier and threshold value. 

These values are selected randomly when the network is 

initially created. Every activated node at the threshold 

receives distinct data from each connected node. The 

received data are multiplied by the node's weight, summed 

up, and it's checked whether they meet the threshold value 

of the next node. If the next layer's threshold is met, this 

sequence of operations is repeated until the output layer. 

These intermediate layers are referred to as "hidden layers" 

and are not limited in number. Input data processed by all 

hidden layers generates an output. This process continues 

until data with the same labels produce similar outputs 

(Figure 5). It is a model of supervised learning [43]. 

 

Figure 5. Neural Network Model 

3.3. Development of CNN model 

Convolutional Neural Networks (CNN) are deep 

learning algorithms used for analyzing visual data through 

a series of layers to effectively identify and separate 

features [44]. In the application of Orange, the 

implementation of a Convolutional Neural Network 

(CNN) algorithm demonstrated a remarkable accuracy rate 

of 99.6%. To further streamline the process of model 

preservation and to augment the control over the model, 

this CNN model has been meticulously transcribed into 

code using the Python programming language, specifically 

leveraging the Tensorflow and Keras libraries for this 

purpose. As an initial step, a selection of pre-designed 

models housed within the Keras library were subjected to 

a process of transfer learning. This approach allowed these 

models to be adeptly trained and then rigorously tested 

against the dataset at hand, ensuring a comprehensive 

evaluation of their performance. 

VGG-16: The Visual Geometry Group (VGG) has 

developed a network model renowned for its depth and 

architectural complexity. This model, known specifically 

as VGG16, is characterized by its assembly of sixteen 3x3 

convolutional layers, which are strategically interspersed 

with a total of five 2x2 max-pooling layers, positioned 

after each set of convolutional operations to reduce spatial 

dimensions and to enhance feature extraction. Following 

the final max-pooling layer, the architecture transitions 

into a sequence of three fully connected layers, where the 

initial two layers boast 4096 channels each, culminating in 

a third layer equipped with 1000 channels. This design 

facilitates a comprehensive processing of image features 

before culminating in a SoftMax layer, which is employed 

for the classification task. Figure 3 illustrates the 

simplified architecture of the VGG16 model, showcasing 

its layered structure and the flow of data through the 

network [45, 46]. 

Transfer Learning with VGG-16 in the Python-Keras 

Library: Initially, the VGG-16 model, available within the 

Keras library, was enhanced by incorporating several fully 

connected layers, resulting in a refined model. The VGG-

16 model (Figure 6) commenced with "imagenet" model 

weights and adapted through additional layers to learn 

from the current dataset. Essential parameters within the 

VGG-16 model, such as the activation function for 

convolutional layers and the input size for images, are 

predetermined. The ReLU activation function, provided by 

the Keras library, is utilized as demonstrated in Formula 1. 

𝑟𝑒𝑙𝑢(𝑥) =
𝑥 + |𝑥|

2
 (1) 

 

 

Figure 6. VGG-16 model structure 
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To ascertain the model's response and enhance its 

performance, various combinations of activation functions 

for the fully connected layers, the activation function for 

the output layer of the fully connected layers, and the 

optimizer used during the model compilation were tested 

within Keras. 

The initial parameter tested was the model optimizer. 

Various optimizers available within the Keras library, 

including Adam, NAdam, Adadelta, RMSProp, and SGD, 

were evaluated. During testing, the activation function for 

the fully connected layer was fixed to LeakyReLU 

(Formula 2), and the activation function for the output 

layer of the fully connected layers was set to Softmax [47]. 

Under these conditions, the SGD optimizer achieved the 

highest accuracy rate of 83%. 

𝐿 − 𝑟𝑒𝑙𝑢(𝑥) =
𝑎 × 𝑥 + |𝑥|

2
 (2) 

Given the optimum performance achieved with the SGD 

formula as the optimizer, experiments were conducted 

with the other two parameters. The next test parameter was 

the activation functions for the fully connected layers. 

During the optimizer selection phase, where LeakyReLU 

was initially chosen, various activation functions available 

in the Keras library, including ReLU, Sigmoid, Softmax, 

Softplus, Softsign, Tanh, SELU, ELU, and Exponential, 

were tested. In these tests, the optimizer was SGD, and the 

activation function for the output layer of the fully 

connected layers was Softmax [48]. The activation 

function test for the fully connected layers achieved the 

highest success with an accuracy rate of 87% using the 

Softsign function (Formula 3). 

𝑠𝑜𝑓𝑡𝑠𝑖𝑔𝑛(𝑥) =
𝑥

|𝑥| + 1
 (3) 

The performance tests identified the most promising 

solutions for both the optimizer and the activation function 

for the fully connected layers. The final parameter to be 

tested was the activation function for the output layer of 

the fully connected layers. During this test, the optimizer 

was set to SGD, and the activation function for the fully 

connected layers was determined to be Softsign. The 

activation functions used in the testing of the fully 

connected layers remained valid during this testing phase 

[49]. The highest success was achieved with an accuracy 

rate of 88% using the Sigmoid activation function 

(Formula 4). 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒−𝑥
 (4) 

Based on the results of the performance tests, the most 

optimal outcome for the CNN model developed through 

the transfer learning method using the VGG-16 with fully 

connected layers for the current dataset is achieved by 

employing Softsign as the activation function for the fully 

connected layers, Sigmoid as the activation function for 

the output layer of the fully connected layers, and SGD as 

the optimizer during model compilation. 

This development process also incorporated other pre-

designed models available in Keras, aside from VGG-16. 

The models subjected to testing included VGG-19, 

DenseNet-121, ResNet-152, RegNet-320X, 

NASNetLarge, and ConvNextBase. Among these, the 

VGG-19 model exhibited the highest efficiency with an 

accuracy rate of 85%, while the other models failed in the 

performance test due to their high percentages in training 

and prediction losses. 

CNN In Layers: Upon the completion of the transfer 

learning process, the resulting model was recorded to have 

an approximate size of 60 MB with an accuracy rate of 

85%. When assessing the ratio of model size to its efficacy, 

it is hypothesized that an evaluation and enhancement of 

each layer's parameters could lead to improvements in at 

least one of the outcomes, be it model size or accuracy rate. 

In alignment with this hypothesis, instead of utilizing pre-

built models available within the Keras library, a 

comprehensive model was constructed layer by layer 

utilizing the model layers found in Keras. The ensuing 

sections will detail each Keras layer utilized in the 

development of the model, including explanations for their 

selection and integration. 

Keras-Sequential Layer: The Sequential layer serves as 

a linear framework for Keras models, facilitating the 

orderly compilation of the model's functional layers 

according to their sequence of addition. It can be 

conceptualized as a list specifying the layers to be 

executed for the model (Figure 7). 

 

Figure 7. Sequential Layer 

Keras-Convolution Layer: The convolution layer is 

instrumental in transforming the pixel values of an input 

image through a convolution process, thereby generating a 

"feature" matrix. During this process, a kernel matrix 

traverses across the pixels of the image by its dimensions, 

at each step multiplying its values with the current pixel 

values of the image, summing these products, and 

inscribing the result into an outcome matrix. 

There are three critical parameters within the 

convolution layer. The first parameter is the filter size, 

which dictates the dimensions of the resulting feature 

matrix. Consequently, setting the filter size too low or too 
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high in relation to the input size can adversely affect the 

learning process. The second significant parameter is the 

kernel matrix size, represented by a pair of integers that 

determine the dimensions of the matrix as it steps across 

the image. A kernel matrix that is too large can consume 

an excessive amount of computational power. Another 

parameter of paramount importance in the convolution 

layer is the activation function. This function is engaged 

following the convolution operations between the kernel 

matrix and the image, at the point when values are to be 

recorded into the feature matrix. The results of the 

convolution-processed values are relayed to this activation 

function, whose output is then documented in the result 

matrix. An example of a convolution layer can be seen in 

the following illustration (Figure 8) [50]. 

 

Figure 8. Convolution Layer 

Keras-BatchNormalization Layer: The batch 

normalization layer normalizes its incoming inputs 

towards a normal distribution, aiming to adjust the mean 

of the data to zero and its standard deviation to one. This 

layer behaves differently during training and prediction 

phases; during training, it processes inputs dynamically 

based on the output from the preceding layers, whereas, 

during prediction, it utilizes fixed values obtained from the 

training phase. The batch normalization process involves 

calculating the mean and variance of the values entering 

the batch layer. The current value is then subtracted by the 

mean, and a constant epsilon number (~1x10^(-5)) is 

added to the variance before dividing by the square root of 

this sum. The resultant value is multiplied by a learned 

gamma value and added to another learned value, beta 

(Formula 5). The term "learned parameters" refers to the 

ability of batch normalization to update these values 

autonomously in response to incoming data during the 

training period [51]. 

𝐵𝑁(𝑥) = 𝛾 ×  
𝑥 − 𝑚𝑒𝑎𝑛(𝑥)

√(𝑣𝑎𝑟(𝑥)+∈)
+ 𝛽 (5) 

Keras-Pooling Layer: The pooling layer reprocesses 

the matrix given as input, using a pooling matrix of a 

specified size. Among the most favored types of pooling 

are max pooling, which selects the highest value, and 

average pooling, which calculates the mean value within 

the pool. In max pooling, the size of the pooling matrix is 

typically 2x2, which means the image is scanned with a 

2x2 matrix, and at each step, the highest value within that 

kernel matrix is recorded into the result matrix (Figure 9) 

(Max Pooling2D Layer*). Conversely, in average pooling, 

the determined kernel matrix records the average of its 

contents into the result matrix at each step (Figure 10) 

(Average Pooling2D Layer*) [52].  

 

Figure 9. Max Pooling Layer 

 

Figure 10. Average Pooling Layer 

Keras-Dropout Layer: The dropout layer nullifies the 

input values at a predetermined rate. The input values of 

the layers that are not zeroed are incremented by a factor 

of 1/(1−rate)1/(1−rate). This mechanism ensures the 

conservation of the total sum of inputs (Figure 11).  
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Figure 11. Dropout Layer 

Keras-Flatten Layer: The flatten layer reduces the 

multi-dimensional input values to a single dimension, 

thereby flattening the input. Consequently, this process 

transforms the data into a format that can be processed by 

fully connected layers. 

Keras-Dense Layer: Fully connected layers are a 

critical component of the neural network architecture, 

constructed based on the numerical value entered as a 

parameter. Each fully connected layer corresponds to a 

network layer within the neural architecture. The 

numerical parameter specified for each layer indicates the 

number of artificial neurons in that layer. 

Registration of the Trained Model in the Service and 

AWS Services: In the initial sections of the materials and 

methods, it was mentioned that from the plants specified—

apple, corn, wheat, tomato, tea, potato, and grape—tomato 

and wheat were removed from the training and test 

datasets for the training of the mentioned model. Due to 

significant variations in the random data from the tomato 

dataset, the model's predictive accuracy was notably 

adversely affected. Consequently, the tomato dataset was 

entirely removed from the training dataset. The 

inconsistency in the size of the data from the wheat dataset, 

coupled with the loss of the diseased portion that the model 

needs to learn when dimensional normalization was 

performed, necessitated its complete removal from the 

training dataset as well. The model, trained with the 

remaining classes, has been saved with a ".h5" extension. 

The completed model has been uploaded to the AWS 

Lambda platform for predictive operations, enabling its 

use by the mobile application. 

3.4. Cross-validation 

Cross-validation is a method of data partitioning 

employed to assess the generalization capability of models 

and to prevent overfitting. Traditionally, the data splitting 

approach reserves between 10-30% of the dataset for 

testing, while 70-90% is allocated for training. If the 

dataset is sufficiently large, the resulting training and 

testing data will also be substantial, thereby enhancing the 

reliability of the observed test error [53]. 

In the cross-validation system, the data is divided into 𝑖 

segments. One segment is isolated for testing, and the 

remaining 𝑖 − 1 segments are utilized for training. 

Subsequently, the segment previously used for testing is 

included in the training, another segment is set aside for 

testing, and the model is retrained. This cycle continues 

until each segment has participated in testing and the 

training is complete, iterating 𝑖 times. Consequently, the 

average of each classification outcome is calculated, and 

this mean value is recorded as the measure of the 

classification model's success [54, 55]. 

3.5. Confusion Matrix and Evaluation Metrics 

The confusion matrix succinctly summarizes the actual 

versus predicted classifications of a classification model in 

a tabular format. This table displays the counts of instances 

correctly and incorrectly classified by the model, thereby 

providing a clearer understanding of the model's 

performance [56-58].  

The term true positive (TP) denotes the positive 

examples that the model has correctly classified. Likewise, 

the term true negative (TN) represents the negative 

examples that have been accurately classified. The terms 

false positive (FP) and false negative (FN), on the other 

hand, refer to the positive and negative examples that the 

model has misclassified, respectively [59, 60]. Table 1 

presents a 5-class confusion matrix. 
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Table 1. Five Class confusion matrix 

 

PREDICTED 

Bacterial Spot Early Blight Late Blight Healthy 
Powdery 

Mildew 

ACTUAL 

Bacterial Spot 𝐓𝟏 F12 F13 F14 F15 

Early Blight F21 𝐓𝟐 F23 F24 F25 

Late Blight F31 F32 𝐓𝟑 F34 F35 

Healthy F41 F42 F43 𝐓𝟒 F45 

Powdery 

Mildew 
F51 F52 F53 F54 𝐓𝟓 

 

In addition to accuracy, precision, recall, F-score, and 

specificity are other preferred metrics for evaluating the 

performance of classification models [61]. The calculation 

of performance metrics for 5 classes is provided in Table 

2. 

Table 2 Performance metrics equations for five-class. 

METRICS EQUANTION 

Average accuracy 
𝑇𝑃𝑖 + 𝑇𝑁𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖 + 𝑇𝑁𝑖 + 𝐹𝑁𝑖

 

Average precision (P) 
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖

 

Average recall (R) 
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖

 

Average F-score 
2 × 𝑃𝑖 × 𝑅𝑖

𝑃𝑖 + 𝑅𝑖

 

Average specificity 
𝑇𝑁𝑖

𝐹𝑃𝑖 + 𝑇𝑁𝑖

 

4. Experiments and Results  

In this study, it was investigated how feature extraction 

and classification processes can be optimized through the 

integration of deep learning and machine learning 

techniques over a data set. Firstly, features were extracted 

from the samples in the dataset using the VGG16 model, 

which is one of the convolutional neural networks and is 

widely accepted for visual feature extraction. This deep 

learning model has shown high success, especially in the 

analysis of visual content, and has found a wide range of 

applications. The obtained characteristics were used for 

comparative evaluation of the performance of five 

different machine learning models - KNN, RF, SVM, NN 

and LR. These models are widely preferred methods for 

classification problems and have given successful results 

in applications in various fields. The main purpose of the 

study is to determine the most appropriate classification 

model for the data set by evaluating the performance of 

different machine learning algorithms on the same feature 

set. This process lays the foundations of a methodology 

that will be an important guide in model selection and can 

be used in future studies. The results obtained are given in 

Table 3.  

 

Table 3. The results obtained from machine learning models as 
a result of feature extraction 

Model Accuracy F-

score 

Precision Recall Specificity 

SVM 0.812 0.811 0.813 0.812 0.761 

KNN 0.889 0.887 0.891 0.889 0.859 

Neural 

Network 

0.956 0.956 0.956 0.956 0.943 

Random 

Forest 

0.888 0.888 0.888 0.888 0.856 

Logistic 

Regression 

0.897 0.897 0.898 0.897 0.869 

 

This dataset presents a comparative analysis of various 

classification models based on metrics like Accuracy, F-

score, Precision, Recall, and Specificity. The Neural 

Network model demonstrates superior performance across 

all metrics, with an impressive accuracy and F-score of 

0.956, suggesting its exceptional capability in both 

precision and handling true positives. Close behind, the 

Logistic Regression model shows high efficiency, 

particularly in balancing precision and recall, evidenced by 

its nearly uniform scores across the metrics, culminating 

in an accuracy of 0.897. The KNN and Random Forest 

models exhibit commendable performance, with 

accuracies around 0.889, indicating their reliability in 

classification tasks. The SVM model, while slightly 

lagging in accuracy at 0.812, still provides a solid baseline 

for comparison. Overall, these results highlight the 

strengths and potential areas for improvement of each 

model in handling classification tasks, with the Neural 

Network model standing out for its robustness and 

effectiveness. 

The model's architectural framework has been 

meticulously refined to an optimal level through a series 

of experimental combinations. To elucidate this process in 

straightforward terms, the procedure begins with the 

transformation of incoming data into a format amenable to 

processing. This is followed by the execution of an image 

prediction task, employing a model that is dynamically 

fetched from the S3 storage service. Finally, the outcome 

of this predictive analysis is disseminated back to the 

requester through an API interface. The schematic 

representation of the AWS Lambda Prediction Function is 

depicted in Figure 12, providing a visual overview of this 
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integrated workflow.  

 

Figure 12. AWS Lambda Prediction Function 
The table delineates a subset of models that have 

undergone training for the tomato plant dataset, exhibiting 

both significant variations and satisfactory outcomes in 

their results. These models include VGG-16 and variants 

of HM-batch(N) with varying hyperparameters, as detailed 

in the associated training conditions. It's worth noting that 

the total number of tests conducted exceeds the quantity 

presented in the table. In this study, we categorize our 

dataset into four distinct sizes—Extra Large (XL), Small 

(S), Medium (M), and Large (L)—to systematically 

evaluate the impact of data volume on our analysis and 

outcomes. This selection has been made to highlight 

models that provide a representative overview of the 

experimental conditions and outcomes (Table 3). 

The provided table (Table 4) delineates a 

comprehensive evaluation of various deep learning models 

tailored for tomato plant disease detection, detailing their 

respective performance metrics and training conditions. 

The VGG-16 models, occupying the initial two rows of the 

table, demonstrate a substantial range in both training and 

prediction accuracy, indicating variability in performance 

which may be attributed to different data volume (XL for 

't-1' and S for 't-2') or perhaps parameter tuning. Despite 

the smaller dataset, 't-2' yields a higher prediction 

accuracy, a testament to VGG-16’s robustness or possibly 

more refined training iterations. 

Subsequent entries reveal a consistent use of a hybrid 

model, hereafter referred to as HM-batch(N), across a 

variety of dataset sizes (S to L). The HM-batch(N) exhibits 

a commendable consistency in training and prediction 

accuracy, especially in instances 't-5' through 't-13', where 

the model achieves over 90% prediction accuracy, a clear 

indication of the model’s effectiveness in generalizing 

from the given data. 

Additionally, the table highlights the disparities in 

training duration ranging from a mere 9 seconds to an 

extensive 906 seconds, suggesting that the models' 

computational demands vary significantly, possibly 

reflecting the complexity of the model architecture or the 

efficiency of the training process. 

In analyzing training and prediction losses, the HM-

batch(N) models maintain a relatively stable loss, with 

minor variations that do not seem to correlate directly with 

the size of the training data. This stability in loss metrics 

may point to a well-regularized model that is resistant to 

overfitting despite the volume of training data. 

The model’s configurations and the corresponding 

training times suggest a trade-off between model 

complexity and training efficiency. Models with shorter 

training times may benefit from simplified architectures or 

reduced parameter spaces, while those requiring longer 

training periods likely capitalize on more complex feature 

representations, which could be essential for capturing 

nuanced patterns within the data. 

In summary, the collated data presented in the table 

provides valuable insights into the relative performance of 

different models under varying conditions, serving as a 

crucial reference for selecting the most appropriate model 

configuration for real-world application in the domain of 

plant disease classification. The evaluations conducted 

provide a substantial foundation for further refinement and 

optimization of deep learning models in agricultural 
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technology.  

Table 4. The Results of the Trained Models 

Test Series Training 
Accuracy 

Predicted 
Accuracy 

Training 
Loss 

Predicted 
Loss 

Training 
Time 

Model Structure Amount of 
Data 

t-1 89.95 88.46 25.30 22.80 85 VGG-16 XL 

t-2 86.77 90.90 32.99 65.98 682 VGG-16 S 

t-3 93.83 64.14 17.17 92.39 8 ResNet152V2 S 

t-4 93.97 64.86 16.78 84.72 9 HM-batchN() M 

t-5 96.79 91.84 13.20 18.20 85 HM-batchN() M 

t-6 81.84 82.89 45.65 43.57 76 HM-batchN() L 

t-7 96.79 91.87 13.19 18.98 84 HM-batchN() L 

t-8 96.90 95.90 13.18 13.60 84 HM-batchN() L 

t-9 96.98 95.90 13.17 13.40 84 HM-batchN() L 

t-10 96.87 96.94 15.32 15.32 97 HM-batchN() L 

t-11 96.73 95.03 13.20 13.20 84 HM-batchN() L 

t-12 97.04 96.83 13.16 13.13 112 HM-batchN() L 

t-13 94.53 98.05 14.47 36.54 906 HM-batchN() L 

 

The confusion matrix given in Figure 13 is used to 

evaluate the prediction success of a model and represents 

the average of the performances of the t-12 training test 

and the t-13 prediction test. The matrix includes five 

different classes: 'Healthy', 'Late Blight', 'Early Blight', 

'Bacterial Spot', and 'Powdery Mildew'. The model 

correctly classified the 'Healthy' class 7,248 times, 'Late 

Blight' 7,934 times, 'Early Blight' 4,794 times, 'Bacterial 

Spot' 8,956 times and 'Powdery Mildew' 1,200 times. 

These values show that the percentage of correct 

predictions of the model for each class is quite high. 

However, Deceptions between the 'Late Blight' and 

'Bacterial Spot' classes are notable; for example, 'Bacterial 

Spot' has been misclassified as 'Late Blight' 384 times. In 

addition, 'Healthy' plants have a relatively low number of 

false positive and false negative results, which shows that 

the model distinguishes this class better than others. In 

general, the model was able to Decipher with high 

accuracy, but improvements can be made to reduce 

confusion between some classes. 

 

Figure 13. The Complexity Matrix of the Model Written in 
Layers is 

This predictive service has been meticulously designed 

to interface with a mobile application (Figure 14) via an 

API connection, the application itself being developed 

with Flutter and Dart. This sophisticated application is 

specifically tailored for the classification of tomato leaf 

diseases, integrating cutting-edge machine learning 

models to facilitate rapid and accurate diagnosis. 

In conclusion, the amalgamation of the most efficacious 

layers from tests t-12 and t-13 into a singular model has 

culminated in an exemplary display of classification 

proficiency, achieving an approximate accuracy of 96%. 

This achievement is significant, considering the model 

underwent a meticulous training regimen over 

approximately 10 hours and was validated across a dataset 

comprising some 33,000 entries. Comparative analysis 

among diverse classification methodologies—

encompassing Neural Networks, Logistic Regression, 

KNN, Random Forest, and SVM—underscores the Neural 

Network's paramount performance, distinguished by its 

unparalleled accuracy and F-score of 0.956. This metric 

evidences the model's exceptional capability in precision 

and true positive handling. Subsequent models, including 

Logistic Regression, KNN, and Random Forest, also 

exhibit laudable performance metrics, thereby affirming 

their applicability and reliability in classification tasks, 

albeit with the SVM model trailing slightly in terms of 

accuracy. 

This scholarly inquiry not only delineates the potency 

of deep learning through the lens of Neural Network 

superiority but also illuminates the nuanced performance 

characteristics across a spectrum of traditional and 

contemporary classification models. It thereby contributes 

to the academic discourse on predictive modeling, 

advocating for a nuanced approach to model selection and 

optimization predicated on comprehensive performance 

evaluation. This research underscores the pivotal role of 

strategic layer integration in bolstering model 

performance, thereby charting a path for future 

explorations into predictive accuracy and model efficiency 

in the realm of machine learning. 

Drawing on the robust foundation of the VGG-16 

architecture, the application has been optimized for mobile 

deployment, ensuring that the complexities of deep neural 

networks are seamlessly adapted to the constraints and 

operational paradigms of mobile devices. This 

optimization entails not only the model’s conversion to a 
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mobile-compatible format but also its synchronization 

with the mobile application to provide real-time predictive 

analytics. 

The harmonization of the application with the VGG-16 

model-based service exemplifies the confluence of mobile 

technology and artificial intelligence in the pursuit of 

agricultural health. This synergy allows for the immediate 

processing and classification of tomato plant diseases, 

presenting a significant advancement in agricultural 

informatics. The utility of such an application lies in its 

ability to offer immediate, field-level diagnostic support to 

farmers and agronomists, thereby enabling informed 

decision-making that can lead to timely and effective 

disease management interventions.  

In essence, the developed mobile application serves as 

an exemplar of how machine learning can be leveraged in 

practical, user-oriented scenarios, bringing the profound 

capabilities of AI to the fingertips of users in diverse 

environments. The integration of such technology into the 

agricultural domain paves the way for smarter, data-driven 

approaches to crop management and disease prevention, 

ultimately contributing to the sustainability and efficiency 

of food production systems. 

 

 

 

 

  

 
 

Figure 14. Mobile Application Screens 

5. Conclusion 
In this comprehensive study, we employed 

Convolutional Neural Networks (CNN), particularly the 
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VGG16 model, alongside various machine learning 

algorithms such as KNN, RF, SVM, NN, and LR, to 

optimize the feature extraction and classification processes 

for tomato leaf disease detection. The neural network 

model, in particular, exhibited exceptional performance, 

achieving an accuracy and F-score of 0.956, standing out 

among the evaluated models. This high level of accuracy 

underscores the neural network's capabilities in precision 

and managing true positives effectively. Following 

closely, the Logistic Regression, KNN, and Random 

Forest models also showed commendable performance 

with accuracy rates around 0.897 and 0.889, respectively, 

proving their reliability in classification tasks. The 

integration of these models with a mobile application 

demonstrates a practical approach to applying advanced 

computational models in agricultural settings, facilitating 

timely and accurate disease detection. This research not 

only highlights the potential of combining deep learning 

with traditional machine learning techniques but also sets 

a benchmark for future studies in agricultural informatics 

and disease management. 

The integration of intensive learning styles, such as deep 

learning, with lightweight hardware components found in 

mobile applications, heralds a promising avenue for 

powerful yet accessible solutions. Enhancing the 

application's user interface with a history section on the 

result page can render it more user-friendly, allowing for 

in-field utility and storage of historical data, which can be 

preserved in conjunction with external storage for long-

term analysis. The choice to save results and the 

determination of the save location would be at the user’s 

discretion, with the default being the last used storage unit. 

Individual growers cultivating such plants in their pots 

or backyard gardens can also protect their produce by 

utilizing a mobile application on their personal devices. 

This system offers both types of users—a commercial 

grower and a private individual—a swift, efficient, and 

cost-effective means of disease monitoring. 

Given that spraying operations via sensor monitoring 

and professional support can be economically 

burdensome, some producers opt for regular pesticide 

applications. However, this can reduce the nutritional 

value of plants due to unnecessary chemical exposure and 

consequently pose risks to consumer health. Additionally, 

excessive application of chemicals may not only affect the 

plant itself but also degrade the quality of the cultivated 

land over time. With the deployment of this application, 

rather than conducting preemptive and unnecessary 

spraying, treatment can be initiated precisely when the 

initial signs of disease are detected. 

For future enhancements, a model offering greater 

control over hyperparameters could be employed. 

Improvements in both image processing methods and 

precise hyperparameter tuning will significantly enhance 

the quality of the model used within the service. While the 

depth of the model and the power of each model layer 

usually have a directly proportional effect on the success 

of the model, overly deep networks and excessively 

complex layers can complicate model training due to their 

high computational demands. One of the primary 

objectives of the project is to maintain the model's agility 

for mobile execution with minimal power loss, even if 

predictions are conducted through a service-based model. 

Therefore, any enhancements in hyperparameters and 

depth must keep the model size within a specified range to 

preserve its lightweight nature for mobile utility. 

Acknowledgments 

This article was extracted from the project numbered 

1919B012221354 carried out within the scope of 

TUBITAK 2209/A UNIVERSITY STUDENTS 

RESEARCH PROJECTS SUPPORT PROGRAM. 

Compliance with ethics requirements 

This study does not contain any studies with human 

participants or animals performed by any of the authors. 

Availability of Supporting Data 

The dataset used in this study, which was performed to 

help diagnose tomato plant leaf diseases, can be accessed 

at https://www.kaggle.com/datasets/ashishmotwani/ 

tomato and https://www.kaggle.com/datasets 

/kaustubhb999 /tomatoleaf/data. 

Declaration of Competing Interest 

The authors declare that they have no known competing 

financial interests or personal relationships that could have 

appeared to influence the work reported in this paper. 

References 

[1] Thangaraj, R., S. Anandamurugan, P. Pandiyan, and V.K. 

Kaliappan, Artificial intelligence in tomato leaf disease 

detection: a comprehensive review and discussion. Journal of 

Plant Diseases and Protection, 2022. 129(3): p. 469-488. DOI: 

10.1007/s41348-021-00500-8. 

[2] Joosten, F., Y. Dijkxhoorn, Y. Sertse, and R. Ruben, How does 

the fruit and vegetable sector contribute to food and nutrition 

security? 2015, LEI. DOI: 10.32604/iasc.2021.016415. 

[3] Tarek, H., H. Aly, S. Eisa, and M. Abul-Soud, Optimized deep 

learning algorithms for tomato leaf disease detection with 

hardware deployment. Electronics, 2022. 11(1): p. 140. DOI: 

10.3390/electronics11010140. 

[4] Schreinemachers, P., E.B. Simmons, and M.C. Wopereis, 

Tapping the economic and nutritional power of vegetables. 

Global food security, 2018. 16: p. 36-45. DOI: 

10.1016/j.gfs.2017.09.005. 

[5] Han, L., M.S. Haleem, and M. Taylor. A novel computer vision-

based approach to automatic detection and severity assessment 

of crop diseases. in 2015 Science and Information Conference 

(SAI). 2015. IEEE. DOI: 10.1109/SAI.2015.7237209. 

[6] Zhang, S., Y. Shang, and L. Wang, Plant disease recognition 

based on plant leaf image. 2015. 

[7] Trivedi, N.K., V. Gautam, A. Anand, H.M. Aljahdali, S.G. 

Villar, D. Anand, N. Goyal, and S. Kadry, Early detection and 

classification of tomato leaf disease using high-performance 

deep neural network. Sensors, 2021. 21(23): p. 7987. DOI: 

10.3390/s21237987. 

[8] Gadade, H.D. and D. Kirange. Machine learning based 



Yildiz et al., Intelligent Methods in Engineering Sciences 3(1): 022-036, 2024 

- 35 - 

 

identification of tomato leaf diseases at various stages of 

development. in 2021 5th International Conference on 

Computing Methodologies and Communication (ICCMC). 

2021. IEEE. DOI: 10.1109/ICCMC51019.2021.9418263. 

[9] Agarwal, M., A. Singh, S. Arjaria, A. Sinha, and S. Gupta, 

ToLeD: Tomato leaf disease detection using convolution 

neural network. Procedia Computer Science, 2020. 167: p. 293-

301. DOI: 10.1016/j.procs.2020.03.225. 

[10] Ashok, S., G. Kishore, V. Rajesh, S. Suchitra, S.G. Sophia, and 

B. Pavithra. Tomato leaf disease detection using deep learning 

techniques. in 2020 5th International Conference on 

Communication and Electronics Systems (ICCES). 2020. IEEE. 

DOI: 10.1109/ICCES48766.2020.9137986. 

[11] Kaushik, M., P. Prakash, R. Ajay, and S. Veni. Tomato leaf 

disease detection using convolutional neural network with data 

augmentation. in 2020 5th International Conference on 

Communication and Electronics Systems (ICCES). 2020. IEEE. 

DOI: 10.1109/ICCES48766.2020.9138030. 

[12] Jiang, D., F. Li, Y. Yang, and S. Yu. A tomato leaf diseases 

classification method based on deep learning. in 2020 chinese 

control and decision conference (CCDC). 2020. IEEE. DOI: 

10.1109/CCDC49329.2020.9164457. 

[13] Das, D., M. Singh, S.S. Mohanty, and S. Chakravarty. Leaf 

disease detection using support vector machine. in 2020 

International Conference on Communication and Signal 

Processing (ICCSP). 2020. IEEE. DOI: 

10.1109/ICCSP48568.2020.9182128. 

[14] Wang, X. and J. Liu, Tomato anomalies detection in 

greenhouse scenarios based on YOLO-Dense. Frontiers in 

Plant Science, 2021. 12: p. 634103. DOI: 

10.3389/fpls.2021.634103. 

[15] Kibriya, H., R. Rafique, W. Ahmad, and S. Adnan. Tomato leaf 

disease detection using convolution neural network. in 2021 

International Bhurban Conference on Applied Sciences and 

Technologies (IBCAST). 2021. IEEE. DOI: 

10.1109/IBCAST51254.2021.9393311. 

[16] Kursun, R., K.K. Bastas, and M. Koklu, Segmentation of dry 

bean (Phaseolus vulgaris L.) leaf disease images with U-Net 

and classification using deep learning algorithms. European 

Food Research and Technology, 2023. 249(10): p. 2543-2558. 

DOI: 10.1007/s00217-023-04319-5. 

[17] Anandhakrishnan, T. and S. Jaisakthi, Deep Convolutional 

Neural Networks for image based tomato leaf disease detection. 

Sustainable Chemistry and Pharmacy, 2022. 30: p. 100793. 

DOI: https://doi.org/10.1016/j.scp.2022.100793. 

[18] Rahman, S.U., F. Alam, N. Ahmad, and S. Arshad, Image 

processing based system for the detection, identification and 

treatment of tomato leaf diseases. Multimedia Tools and 

Applications, 2023. 82(6): p. 9431-9445. DOI: 

10.1007/s11042-022-13715-0. 

[19] Janarthan, S., S. Thuseethan, S. Rajasegarar, and J. Yearwood, 

P2OP—Plant Pathology on Palms: A deep learning-based 

mobile solution for in-field plant disease detection. Computers 

and Electronics in Agriculture, 2022. 202: p. 107371. DOI: 

10.1016/j.compag.2022.107371. 

[20] Sujatha, R., J.M. Chatterjee, N. Jhanjhi, and S.N. Brohi, 

Performance of deep learning vs machine learning in plant leaf 

disease detection. Microprocessors and Microsystems, 2021. 

80: p. 103615. DOI: 10.1016/j.micpro.2020.103615. 

[21] Sardogan, M., A. Tuncer, and Y. Ozen. Plant leaf disease 

detection and classification based on CNN with LVQ algorithm. 

in 2018 3rd international conference on computer science and 

engineering (UBMK). 2018. IEEE. DOI: 

10.1109/UBMK.2018.8566635. 

[22] Harakannanavar, S.S., J.M. Rudagi, V.I. Puranikmath, A. 

Siddiqua, and R. Pramodhini, Plant leaf disease detection using 

computer vision and machine learning algorithms. Global 

Transitions Proceedings, 2022. 3(1): p. 305-310. DOI: 

10.1016/j.gltp.2022.03.016. 

[23] De Luna, R.G., E.P. Dadios, and A.A. Bandala. Automated 

image capturing system for deep learning-based tomato plant 

leaf disease detection and recognition. in TENCON 2018-2018 

IEEE Region 10 Conference. 2018. IEEE. DOI: 

10.1109/TENCON.2018.8650088. 

[24] Deng, Y., H. Xi, G. Zhou, A. Chen, Y. Wang, L. Li, and Y. Hu, 

An effective image-based tomato leaf disease segmentation 

method using MC-UNet. Plant Phenomics, 2023. 5: p. 0049. 

DOI: 10.34133/plantfenomik.0049. 

[25] Ally, N.M., H. Neetoo, V.M. Ranghoo-Sanmukhiya, and T.A. 

Coutinho, Greenhouse-grown tomatoes: microbial diseases 

and their control methods: a review. International Journal of 

Phytopathology, 2023. 12(1): p. 99-127. DOI: 

10.33687/phytopath.012.01.4273. 

[26] Soto-Caro, A., G.E. Vallad, K.V. Xavier, P. Abrahamian, F. 

Wu, and Z. Guan, Managing bacterial spot of tomato: do 

chemical controls pay off? Agronomy, 2023. 13(4): p. 972. 

DOI: 10.3390/agronomy13040972. 

[27] Sharma, S. and K. Bhattarai, Progress in developing bacterial 

spot resistance in tomato. Agronomy, 2019. 9(1): p. 26. DOI: 

10.3390/agronomy9010026. 

[28] GM, S.K., S. Sriram, R. Laxman, and K. Harshita, Tomato late 

blight yield loss assessment and risk aversion with resistant 

hybrid. Journal of Horticultural Sciences, 2022. 17(2): p. 411-

416. DOI: 10.24154/jhs.v17i2.1105. 

[29] Hong, Y.-H., J. Meng, X.-L. He, Y.-Y. Zhang, and Y.-S. Luan, 

Overexpression of MiR482c in tomato induces enhanced 

susceptibility to late blight. Cells, 2019. 8(8): p. 822. DOI: 

10.3390/cells8080822. 

[30] Sunarti, S., C. Kissoudis, Y. Van Der Hoek, H. Van Der Schoot, 

R.G. Visser, V. Der Linden, C. Gerard, C. Van De Wiel, and Y. 

Bai, Drought stress interacts with powdery mildew infection in 

tomato. Frontiers in Plant Science, 2022. 13: p. 845379. DOI: 

10.3389/fpls.2022.845379. 

[31] Wang, H., W. Gong, Y. Wang, and Q. Ma, Contribution of a 

WRKY transcription factor, ShWRKY81, to powdery mildew 

resistance in wild tomato. International Journal of Molecular 

Sciences, 2023. 24(3): p. 2583. DOI: 10.3390/ijms24032583. 

[32] Gupta, V., V. Razdan, S. Sharma, and K. Fatima, Progress and 

severity of early blight of tomato in relation to weather 

variables in Jammu province. Journal of Agrometeorology, 

2020. 22(2): p. 198-202. DOI: 10.54386/jam.v22i2.168. 

[33] Koklu, M., R. Kursun, E.T. Yasin, and Y.S. Taspinar. 

Detection of Defects in Soybean Seeds by Extracting Deep 

Features with SqueezeNet. in 2023 IEEE 12th International 

Conference on Intelligent Data Acquisition and Advanced 

Computing Systems: Technology and Applications (IDAACS). 

2023. DOI: 10.1109/IDAACS58523.2023.10348939. 

[34] Torres, G.d.O., M.X. Guterres, and V.R.R. Celestino, Legal 

actions in Brazilian air transport: A machine learning and 

multinomial logistic regression analysis. Frontiers in Future 

Transportation, 2023. 4: p. 1070533. DOI: 

10.3389/ffutr.2023.1070533. 

[35] Kursun, R., I. Cinar, Y.S. Taspinar, and M. Koklu. Flower 

Recognition System with Optimized Features for Deep 

Features. in 2022 11th Mediterranean Conference on 

Embedded Computing (MECO). 2022. DOI: 

10.1109/MECO55406.2022.9797103. 

[36] Cakir, M., M. Yilmaz, M.A. Oral, H.O. Kazanci, and O. Oral, 

Accuracy assessment of RFerns, NB, SVM, and kNN machine 

learning classifiers in aquaculture. Journal of King Saud 

University-Science, 2023. 35(6): p. 102754. DOI: 

10.1016/j.jksus.2023.102754. 

[37] Koklu, M. and K. Sabancı, International Journal of Intelligent 

Systems and Applications in Engineering, 2016. 4(Special 

Issue-1): p. 249-251. DOI: 10.18201/ijisae.281901. 

[38] Cen, H., D. Huang, Q. Liu, Z. Zong, and A. Tang, Application 

Research on Risk Assessment of Municipal Pipeline Network 

Based on Random Forest Machine Learning Algorithm. Water, 

2023. 15(10): p. 1964. DOI: 10.3390/w15101964. 

[39] Butuner, R., I. Cinar, Y.S. Taspinar, R. Kursun, M.H. Calp, and 

M. Koklu, Classification of deep image features of lentil 

varieties with machine learning techniques. European Food 

Research and Technology, 2023. 249(5): p. 1303-1316. DOI: 

10.1007/s00217-023-04214-z. 

[40] Taspinar, Y.S., I. Cinar, and M. Koklu, Prediction of computer 

type using benchmark scores of hardware units. Selcuk 

University Journal of Engineering Sciences, 2021. 20(1): p. 11-

17. 



Yildiz et al., Intelligent Methods in Engineering Sciences 3(1): 022-036, 2024 

- 36 - 

 

[41] Pisner, D.A. and D.M. Schnyer, Support vector machine, in 

Machine learning. 2020, Elsevier. p. 101-121. DOI: 

10.1016/B978-0-12-815739-8.00006-7. 

[42] Tutuncu, K., I. Cinar, R. Kursun, and M. Koklu. Edible and 

Poisonous Mushrooms Classification by Machine Learning 

Algorithms. in 2022 11th Mediterranean Conference on 

Embedded Computing (MECO). 2022. DOI: 

10.1109/MECO55406.2022.9797212. 

[43] Agatonovic-Kustrin, S. and R. Beresford, Basic concepts of 

artificial neural network (ANN) modeling and its application 

in pharmaceutical research. Journal of pharmaceutical and 

biomedical analysis, 2000. 22(5): p. 717-727. DOI: 

10.1016/S0731-7085(99)00272-1. 

[44] Kursun, R., E.T. Yasin, and M. Koklu, The Effectiveness of 

Deep Learning Methods on Groundnut Disease Detection. 

[45] Geng, L., S. Zhang, J. Tong, and Z. Xiao, Lung segmentation 

method with dilated convolution based on VGG-16 network. 

Computer Assisted Surgery, 2019. 24(sup2): p. 27-33. DOI: 

10.1080/24699322.2019.1649071. 

[46] Kursun, R. and M. Koklu. Enhancing Explainability in Plant 

Disease Classification using Score-CAM: Improving Early 

Diagnosis for Agricultural Productivity. in 2023 IEEE 12th 

International Conference on Intelligent Data Acquisition and 

Advanced Computing Systems: Technology and Applications 

(IDAACS). 2023. DOI: 

10.1109/IDAACS58523.2023.10348713. 

[47] Dubey, A.K. and V. Jain. Comparative study of convolution 

neural network’s relu and leaky-relu activation functions. in 

Applications of Computing, Automation and Wireless Systems 

in Electrical Engineering: Proceedings of MARC 2018. 2019. 

Springer. DOI: 10.1007/978-981-13-6772-4_76. 

[48] Waoo, A.A. and B.K. Soni. Performance analysis of sigmoid 

and relu activation functions in deep neural network. in 

Intelligent Systems: Proceedings of SCIS 2021. 2021. Springer. 

DOI: 10.1007/978-981-16-2248-9_5. 

[49] Gulli, A. and S. Pal, Deep learning with Keras. 2017: Packt 

Publishing Ltd. 

[50] Albawi, S., T.A. Mohammed, and S. Al-Zawi. Understanding 

of a convolutional neural network. in 2017 international 

conference on engineering and technology (ICET). 2017. Ieee. 

DOI: 10.1109/ICEngTechnol.2017.8308186. 

[51] Kolarik, M., R. Burget, and K. Riha. Comparing Normalization 

Methods for Limited Batch Size Segmentation Neural Networks. 

in 2020 43rd International Conference on Telecommunications 

and Signal Processing (TSP). 2020. DOI: 

10.1109/TSP49548.2020.9163397. 

[52] Ebert-Uphoff, I., R. Lagerquist, K. Hilburn, Y. Lee, K. Haynes, 

J. Stock, C. Kumler, and J.Q. Stewart, CIRA Guide to Custom 

Loss Functions for Neural Networks in Environmental 

Sciences--Version 1. arXiv preprint arXiv:2106.09757, 2021. 

[53] Berrar, D., Cross-validation. 2019. 

[54] Xu, Y. and R. Goodacre, On splitting training and validation 

set: a comparative study of cross-validation, bootstrap and 

systematic sampling for estimating the generalization 

performance of supervised learning. Journal of analysis and 

testing, 2018. 2(3): p. 249-262. DOI: 10.1007/s41664-018-

0068-2. 

[55] Isik, M., B. Ozulku, R. Kursun, Y.S. Taspinar, I. Cinar, E.T. 

Yasin, and M. Koklu, Automated classification of hand-woven 

and machine-woven carpets based on morphological features 

using machine learning algorithms. The Journal of The Textile 

Institute: p. 1-10. DOI: 10.1080/00405000.2024.2309694. 

[56] Deepak, S. and P. Ameer, Brain tumor classification using 

deep CNN features via transfer learning. Computers in biology 

and medicine, 2019. 111: p. 103345. DOI: 

10.1016/j.compbiomed.2019.103345. 

[57] Gencturk, B., S. Arsoy, Y.S. Taspinar, I. Cinar, R. Kursun, E.T. 

Yasin, and M. Koklu, Detection of hazelnut varieties and 

development of mobile application with CNN data fusion 

feature reduction-based models. European Food Research and 

Technology, 2024. 250(1): p. 97-110. DOI: 10.1007/s00217-

023-04369-9. 

[58] Taspinar, Y.S., M. Koklu, and M. Altin, Classification of flame 

extinction based on acoustic oscillations using artificial 

intelligence methods. Case Studies in Thermal Engineering, 

2021. 28: p. 101561. DOI: doi.org/10.1016/j.csite.2021.101561. 

[59] Koklu, M., R. Kursun, Y.S. Taspinar, and I. Cinar, 

Classification of date fruits into genetic varieties using image 

analysis. Mathematical Problems in Engineering, 2021. 2021: 

p. 1-13. DOI: 10.1155/2021/4793293. 

[60] Yasin, E.T., I.A. Ozkan, and M. Koklu, Detection of fish 

freshness using artificial intelligence methods. European Food 

Research and Technology, 2023. 249(8): p. 1979-1990. DOI: 

10.1007/s00217-023-04271-4. 

[61] Taspinar, Y.S., I. Cinar, R. Kursun, and M. Koklu, Monkeypox 

Skin Lesion Detection with Deep Learning Models and 

Development of Its Mobile Application. Public health. 500: p. 

5. 

 

  

 


