
Intelligent Methods in Engineering Sciences 3(1): 022-036, 2024

INTELLIGENT METHODS

IN ENGINEERING SCIENCES

https://www.imiens.org

International

Open Access

March, 2024

e-ISSN 2979-9236

Research Article https://doi.org/10.58190/imiens.2024.84

* Corresponding Author: rkursun@selcuk.edu.tr

Classification of Diseases in Tomato Leaves Using Deep Learning Methods

Muslume Beyza YILDIZ a,* , Mustafa Fatih HAFIF a , Emre Kagan KOKSOY a ,

Ramazan KURSUN b

a Department of Computer Engineering, Faculty of Technology, Selcuk University, Konya, TÜRKİYE
b Guneysinir Vocational School, Selcuk University, Guneysinir, TÜRKİYE

 ARTICLE INFO ABSTRACT

Article history:

Received 20 January 2024

Accepted 28 March 2024

 The automatic detection of diseases in tomato leaves significantly contributes to tomato production

and enables farmers to manage these issues more effectively. Tomatoes are a crucial commercial

crop for local markets and exports, representing a significant agricultural sector in our country.

Diseases affecting tomato leaves directly influence tomato yield and quality, making early

detection and intervention paramount. Our study aims to address tomato losses due to leaf diseases

using computer technology. Recently, Convolutional Neural Networks (CNN) have been

employed in various fields including agriculture, military, robotics, and medicine for

classification, object detection, and segmentation tasks. The integration of computer vision and

image processing with deep learning architectures has led to notable advancements in these areas,

offering solutions with higher accuracy and reducing human error. In our research, a dataset was

created using images of tomato leaf diseases selected from Kaggle. Algorithms such as k-Nearest

Neighbors (KNN), Random Forest (RF), Logistic Regression (LR), Support Vector Machine

(SVM), and Neural Networks (NN) were applied using Orange, a data visualization and analysis

software. Moreover, a custom algorithm developed in Python demonstrated the highest accuracy.

while the highest classification accuracy of classification made with machine learning algorithms

was 95.6%, the classification accuracy was achieved about 96% with the developed deep learning

model. This system was integrated into an Amazon Web Services (AWS) Lambda function,

subsequently utilized in a mobile application developed using Flutter for the UI and Dart for

backend, ensuring connectivity with the Lambda function.

This is an open access article under the CC BY-SA 4.0 license.

(https://creativecommons.org/licenses/by-sa/4.0/)

Keywords:

convolutional neural networks,
image processing,

machine learning algorithms,

mobile application integration,
tomato leaf diseases

1. INTRODUCTION

Agriculture is an indispensable element in meeting the

global food needs of humanity, playing a pivotal role in the

economic development of nations [1]. It also holds a

critical role in contributing to the development of countries

economically [2]. The substantial increase in population

densities has escalated the need for food security [3].

Nonetheless, to meet this demand, the agricultural sector

is in continuous need of innovative solutions and effective

methods.

Due to their high nutritional value, tomatoes play a

significant role in agricultural trade and production [4].

They are of great importance among vegetable crops

worldwide, with their production increasing visibly each

year. With the rising demand, farmers face losses due to

diseases [2].

It is anticipated that approximately 40% of crops are lost

due to plant diseases [5]. Similarly, leaf diseases in tomato

cultivation cause significant losses in production. The

early diagnosis of these diseases is of critical importance

for sustaining efficiency and sustainability in the

agricultural economy. Previous research indicates that 80-

90% of plant diseases manifest on leaves [6, 7], thus,

diagnoses are commonly made by examining leaf

symptoms. However, the accuracy and precision of these

diagnoses require extensive knowledge and experience, in

addition to incurring greater time and costs [8].

Incorrect use of agricultural pesticides for disease

treatment can increase the resistance of pathogens

affecting plants, making the accurate diagnosis of plant

diseases extremely important. In today’s world, where

mobile technology is prevalent in many aspects of our

lives, this article presents the detection of diseases in

tomato leaves via a mobile application, enabling producers

themselves to control the quality and efficiency of tomato

production. Pre-trained machine learning models and deep

learning algorithms are stored on the server. Through our

application, producers can photograph diseased leaves

with their mobile phones and upload these images to the

server. Then, the server performs analyses to diagnose the

https://doi.org/10.58190/imiens.2024.84
https://creativecommons.org/licenses/by-sa/4.0/
https://orcid.org/0009-0002-0231-687X
https://orcid.org/0009-0002-8670-9071
https://orcid.org/0009-0001-7691-869X
https://orcid.org/0000-0002-6729-1055

Yildiz et al., Intelligent Methods in Engineering Sciences 3(1): 022-036, 2024

- 23 -

disease. The results are provided back to the user as a

decision support mechanism for determining tomato leaf

diseases. In short, the application performs disease

prediction through an application interface using a pre-

trained model via AWS Lambda. Figure 1 illustrates the

operational logic of the application.

Figure 1. Block diagram of the study

2. Related Work

During the literature review, articles focusing on the

detection of diseases in tomato leaves were examined.

Additionally, prior studies directly related to our research

scope and those indirectly contributing to this topic were

included.

Agarwal et al., utilized the Plant Village dataset for the

detection of diseases on tomato leaves in their study,

employing a Convolutional Neural Network (CNN)-based

model for disease detection and classification. This model

comprises 3 convolutional, 3 max-pooling, and 2 fully

connected layers, achieving an average accuracy rate of

91.2% across 9 diseases and one healthy class [9].

Ashok et al., developed a method using deep learning

techniques for tomato leaf disease detection, preferably

using plant images. They proposed a CNN algorithm for

hierarchical feature extraction, reaching a 98% accuracy

level when tested on OpenCV [10].

Kaushik et al., developed a deep CNN model using

PyTorch to classify 6 tomato diseases. They validated their

test dataset with parameters obtained from the ResNet-50

model, enhancing the model's accuracy to 97% through

data augmentation [11].

Jiang et al., used 1000 photographs for three different

tomato leaf diseases. They replaced ResNet-50's activation

function with Leaky-ReLU and altered the kernel size of

the first convolutional layer to 11x11, achieving a 98%

accuracy rate [12].

Das et al., created a dataset for a tomato leaf disease

detection system comprising 7 diseased and 1 healthy

tomato leaf image. The dataset includes 60 features

derived from each image. Among the experiments

conducted with SVM, RF, and LR algorithms, the highest

accuracy rate of 87.6% was obtained by SVM [13].

Wang and Liu focused on the development of the

YOLOv3 model for detecting complex natural

environment tomato anomalies in their study. The

developed YOLO-Dense model achieved the highest

accuracy of 96.41% compared to SSD, Faster R-CNN, and

YOLO V3 models [14].

Kibriya et al., employed two CNN-based models for

diagnosing tomato leaf diseases, using the Plant Village

dataset containing 10735 leaf images. VGG16 achieved

98% accuracy, while GoogLeNet reached 99.23%

accuracy [15].

Trivedi et al., used CNNs to classify tomato diseases,

utilizing a dataset of 3000 images comprising 9 types of

diseased tomato leaves and one healthy leaf on Google

Colab. After processing the CNN model with varying

hyperparameters, they achieved an accuracy rate of

98.49% [7].

Kursun et al., demonstrates that using the U-Net

architecture for segmenting agricultural images, followed

by classification with deep learning models like

DenseNet201, significantly improves the accuracy of

detecting plant diseases in bean plants, achieving up to

100% accuracy [16].

Anandhakrishnan and Jaisakthi used a total of 18,160

images of tomato leaf diseases from the Plant Village

dataset, allocating 60% for training and 40% for testing.

The DCNN (Deep Convolutional Neural Network) model

achieved an accuracy rate of 98.4% in the test set [17].

Rahman et al., collected their dataset from different

tomato fields in Pakistan for their study on tomato leaf

disease detection. Using the Gray Level Co-occurrence

Matrix (GLCM) GLCM algorithm to calculate 13 different

features, they classified tomato diseases with the Support

Vector Machine (SVM), showing that the method works

with 100% accuracy for healthy leaves, 95% for early

blight, 90% for Septoria leaf spot, and 85% for late blight

[18].

Janarthan et al., used a total of 18160 images for the

detection of 10 different diseases in their project,

employing Adam Stochastic optimization with Python's

Yildiz et al., Intelligent Methods in Engineering Sciences 3(1): 022-036, 2024

- 24 -

OpenCV library [19].

R. Sujatha et al., prepared 609 photographs for training

with 10-fold cross-validation, focusing on a performance

comparison between ML and DL algorithms. They

considered SVM, RF, and SGD as machine learning

algorithms, and Inception-V3, VGG-16, and VGG-19 as

deep learning algorithms, with the highest accuracy rate of

89.5% achieved by VGG-16 [20].

M. Sardogan et al., used a total of 500 photographs, 400

for training and 100 for testing, in their research. They

employed ReLU as the activation function and the LVQ

algorithm for classification and supervised learning,

achieving an average accuracy rate of 86% [21].

Harakannanavar et al., used contour tracking for

boundary extraction of leaf samples. Furthermore,

Discrete Wavelet Transform (DWT), Principal

Component Analysis (PCA), and GLCM were used for

feature extraction, and SVM, KNN, CNN were used for

classification, with CNN achieving the highest accuracy

rate of 99.6% [22].

De Luna et al., worked on three different diseases in a

tomato species named Diamete Max: Phoma Rot, Leaf

Miner, and Target Spot, using approximately 5000 images

in total. Classification with DCNN and anomaly detection

with F-RCNN were conducted, finding the anomaly test's

confidence score to be 80%. The classification and disease

recognition accuracy rate was found to be 95.75%, and

diseases in tomato leaves were captured with 91.67%

accuracy using an automatic image capture system [23].

The literature review indicates that some studies have

provided high accuracy in performance. However, the

portability of these systems has been found lacking. The

mission of this project is to develop smaller and faster

versions of existing disease diagnosis algorithms and make

these versions usable on small-scale devices like mobile

phones.

3. Materials and Methods

Agriculture plays a critical role in the survival of

humanity on Earth, serving as both a primary source of

nourishment and a cornerstone of economic growth for

regions. However, it is well-documented that plants are

susceptible to adverse effects from various factors,

including bacteria, viruses, fungi, or the excessive use of

agricultural chemicals. The misdiagnosis of diseases

affecting agricultural products often leads to the

unnecessary and excessive application of pesticides. This

practice contributes to the development of resistant

pathogen strains, incurs higher costs, and exacerbates the

frequency of outbreaks, resulting in significant financial

and environmental losses [24, 25].

In response to these challenges, our study has developed

a dataset using photographs of tomato leaf diseases

selected from Kaggle. Through the application of KNN,

RF, LR, SVM, and NN algorithms via Orange, an open-

source data visualization, and analysis tool, we have

explored various computational approaches. Additionally,

a custom algorithm was crafted using the Python

programming language and applied to the same dataset to

enhance diagnostic accuracy. Subsequently, this algorithm

was integrated into an Amazon Web Services (AWS)

Lambda function, which served as a backend for a newly

developed mobile application. The mobile application,

designed to facilitate the detection of tomato leaf diseases,

connects seamlessly with the AWS Lambda function,

embodying our commitment to leveraging advanced

technologies for sustainable agricultural practices.

3.1. Raw Dataset

Kaggle is a community of data scientists and machine

learning practitioners. It actively organizes competitions

with prizes for various projects. During the initial

development stages, a small-scale dataset from Kaggle

was chosen. A dataset composed of tomato leaves found

on Kaggle (Kaustubh B., 2020) was utilized. This dataset

contains 10 classes, out of which only 5 were subjected to

testing. As the testing process continued, datasets obtained

by different Kaggle users (Ashish Motwani et al., 2023;

Nouaman Lamhari et al., 2019) were merged with the

initial dataset. This integration allowed for an examination

of the model's performance on dense data sets.

The preferred 4 different tomato plant leaf diseases are

given together with their descriptions.

Bacterial Spot: Bacterial spot is a disease caused by the

bacterium Xanthomonas campestris pv. vesicatoria. It

affects both peppers and tomatoes, manifesting as circular

or irregularly shaped lesions on the leaves. In advanced

stages, these lesions become slightly sunken, dark brown,

and scab-like in texture. If numerous, the spots can

coalesce and grow together. The primary consequences

include leaf lesions, leaf drop, fruit lesions, and

significantly, a severe reduction in marketable fruit yield.

This disease can inflict substantial economic damage [26,

27].

Late Blight: The disease caused by the fungus

Phytophthora infestans was first observed in 1843 in

Philadelphia and New York. Late blight can easily affect

leaves other than the initially infected ones. It begins as

irregular greenish spots on the fruit, giving it the

appearance of frost damage. In humid conditions, a white,

fluffy growth appears on the underside of leaves. Infected

fruits rapidly become foul-smelling masses. Late blight

typically occurs in mid to late August during cool nights.

This fungus also affects potatoes and can spread from

potatoes to tomatoes. Without intervention, it can

devastate all plants in a cultivation area within 7 to 10 days

[28, 29].

Powdery Mildew: First observed in the United Kingdom

in 1986, powdery mildew has since spread worldwide.

Yildiz et al., Intelligent Methods in Engineering Sciences 3(1): 022-036, 2024

- 25 -

This fungal infection, commonly known as powdery

mildew, affects the above-ground parts of the plant but

does not infect the fruit. It causes white lesions on leaves

and significantly reduces the amount of marketable

produce, despite not spreading to the fruit [30, 31].

Early Blight: Host invasion is facilitated by enzymes

that break down the host's cell wall and a series of toxins

that kill host cells and allow the pathogen to feed on the

dead cells. Lesions become visible 2-3 days after infection,

and spore production occurs within 3-5 days. This disease,

caused by the fungus Alternaria solani, leads to the

formation of spots on leaves, stems, fruits, and petioles

[32].

3.2. Machine Learning Models

In the realm of precision agriculture, the deployment of

machine learning algorithms stands at the forefront of

innovative approaches to enhance crop health monitoring

and disease management. This study leverages a suite of

sophisticated machine learning algorithms, namely k-

Nearest Neighbors (KNN), Random Forest (RF), Logistic

Regression (LR), Support Vector Machine (SVM), and

Neural Networks (NN), to automate the detection and

classification of diseases in tomato plant leaves. These

algorithms are selected for their proven efficacy in pattern

recognition and classification tasks, promising to

significantly improve the accuracy and efficiency of

disease diagnosis in agricultural practices. The following

sections will delve into the theoretical underpinnings and

practical applications of each algorithm, illustrating their

contributions to the advancement of agricultural

technology [33].

Logistic Regression (LR): Logistic Regression is a

paramount statistical and data mining technique utilized by

statisticians and researchers for the analysis and

classification of datasets. It offers a method to classify

according to probability rules by calculating the estimated

values of the dependent variable as probabilities. Some of

the principal advantages of LR include its inherent

capability to provide probabilities and its applicability to

multi-class classification problems [34, 35].

K-Nearest Neighbors (KNN): KNN is an algorithm

used for classification in supervised learning. The

algorithm initially selects a reference value as the number

of data points close to the desired data (K value) and then

finds the points closest to it using the Euclidean formula.

For instance, if we have two classes, A and B, and we input

new data with K=10, if the algorithm finds 6 instances of

B and 4 of A, then the new data point is classified as

belonging to class B (Figure 2). It performs exceptionally

well with data classes where the relationship between

variables is complex [36, 37].

Figure 2. The KNN Model

Random Forest (RF): Fundamentally, Random Forest

is constituted by the collective use of a series of decision

trees. Decision trees attempt to divide the dataset using a

tree structure and eventually reach a conclusion or

prediction (Figure 3). The tree structure begins at the root

node, continuing to split into branches according to certain

criteria. Each branch represents a decision point and may

culminate in a class label or prediction value. RF is utilized

to assess the outcome of all decision trees to reach a more

accurate conclusion [33, 38-40].

Figure 3. Decision Tree

Support Vector Machine (SVM): SVM is a machine

learning algorithm predominantly used for classification

problems. It determines decision boundaries to classify

data accordingly. SVM can operate with boundaries in

various dimensions, such as lines, planes, or hyper-planes.

Class labels are used to determine which class data points

belong to, based on their position relative to these

boundaries (Figure 4). SVM is also applicable to non-

linear datasets [41, 42].

Yildiz et al., Intelligent Methods in Engineering Sciences 3(1): 022-036, 2024

- 26 -

Figure 4. SVM Model

Neural Network (NN): A model that emulates the

functioning system of the human brain. Currently,

"feedforward" forms are predominantly used. Data enters

the network through the input layer. Each node in every

layer has its own weight multiplier and threshold value.

These values are selected randomly when the network is

initially created. Every activated node at the threshold

receives distinct data from each connected node. The

received data are multiplied by the node's weight, summed

up, and it's checked whether they meet the threshold value

of the next node. If the next layer's threshold is met, this

sequence of operations is repeated until the output layer.

These intermediate layers are referred to as "hidden layers"

and are not limited in number. Input data processed by all

hidden layers generates an output. This process continues

until data with the same labels produce similar outputs

(Figure 5). It is a model of supervised learning [43].

Figure 5. Neural Network Model

3.3. Development of CNN model

Convolutional Neural Networks (CNN) are deep

learning algorithms used for analyzing visual data through

a series of layers to effectively identify and separate

features [44]. In the application of Orange, the

implementation of a Convolutional Neural Network

(CNN) algorithm demonstrated a remarkable accuracy rate

of 99.6%. To further streamline the process of model

preservation and to augment the control over the model,

this CNN model has been meticulously transcribed into

code using the Python programming language, specifically

leveraging the Tensorflow and Keras libraries for this

purpose. As an initial step, a selection of pre-designed

models housed within the Keras library were subjected to

a process of transfer learning. This approach allowed these

models to be adeptly trained and then rigorously tested

against the dataset at hand, ensuring a comprehensive

evaluation of their performance.

VGG-16: The Visual Geometry Group (VGG) has

developed a network model renowned for its depth and

architectural complexity. This model, known specifically

as VGG16, is characterized by its assembly of sixteen 3x3

convolutional layers, which are strategically interspersed

with a total of five 2x2 max-pooling layers, positioned

after each set of convolutional operations to reduce spatial

dimensions and to enhance feature extraction. Following

the final max-pooling layer, the architecture transitions

into a sequence of three fully connected layers, where the

initial two layers boast 4096 channels each, culminating in

a third layer equipped with 1000 channels. This design

facilitates a comprehensive processing of image features

before culminating in a SoftMax layer, which is employed

for the classification task. Figure 3 illustrates the

simplified architecture of the VGG16 model, showcasing

its layered structure and the flow of data through the

network [45, 46].

Transfer Learning with VGG-16 in the Python-Keras

Library: Initially, the VGG-16 model, available within the

Keras library, was enhanced by incorporating several fully

connected layers, resulting in a refined model. The VGG-

16 model (Figure 6) commenced with "imagenet" model

weights and adapted through additional layers to learn

from the current dataset. Essential parameters within the

VGG-16 model, such as the activation function for

convolutional layers and the input size for images, are

predetermined. The ReLU activation function, provided by

the Keras library, is utilized as demonstrated in Formula 1.

𝑟𝑒𝑙𝑢(𝑥) =
𝑥 + |𝑥|

2
 (1)

Figure 6. VGG-16 model structure

Yildiz et al., Intelligent Methods in Engineering Sciences 3(1): 022-036, 2024

- 27 -

To ascertain the model's response and enhance its

performance, various combinations of activation functions

for the fully connected layers, the activation function for

the output layer of the fully connected layers, and the

optimizer used during the model compilation were tested

within Keras.

The initial parameter tested was the model optimizer.

Various optimizers available within the Keras library,

including Adam, NAdam, Adadelta, RMSProp, and SGD,

were evaluated. During testing, the activation function for

the fully connected layer was fixed to LeakyReLU

(Formula 2), and the activation function for the output

layer of the fully connected layers was set to Softmax [47].

Under these conditions, the SGD optimizer achieved the

highest accuracy rate of 83%.

𝐿 − 𝑟𝑒𝑙𝑢(𝑥) =
𝑎 × 𝑥 + |𝑥|

2
 (2)

Given the optimum performance achieved with the SGD

formula as the optimizer, experiments were conducted

with the other two parameters. The next test parameter was

the activation functions for the fully connected layers.

During the optimizer selection phase, where LeakyReLU

was initially chosen, various activation functions available

in the Keras library, including ReLU, Sigmoid, Softmax,

Softplus, Softsign, Tanh, SELU, ELU, and Exponential,

were tested. In these tests, the optimizer was SGD, and the

activation function for the output layer of the fully

connected layers was Softmax [48]. The activation

function test for the fully connected layers achieved the

highest success with an accuracy rate of 87% using the

Softsign function (Formula 3).

𝑠𝑜𝑓𝑡𝑠𝑖𝑔𝑛(𝑥) =
𝑥

|𝑥| + 1
 (3)

The performance tests identified the most promising

solutions for both the optimizer and the activation function

for the fully connected layers. The final parameter to be

tested was the activation function for the output layer of

the fully connected layers. During this test, the optimizer

was set to SGD, and the activation function for the fully

connected layers was determined to be Softsign. The

activation functions used in the testing of the fully

connected layers remained valid during this testing phase

[49]. The highest success was achieved with an accuracy

rate of 88% using the Sigmoid activation function

(Formula 4).

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒−𝑥
 (4)

Based on the results of the performance tests, the most

optimal outcome for the CNN model developed through

the transfer learning method using the VGG-16 with fully

connected layers for the current dataset is achieved by

employing Softsign as the activation function for the fully

connected layers, Sigmoid as the activation function for

the output layer of the fully connected layers, and SGD as

the optimizer during model compilation.

This development process also incorporated other pre-

designed models available in Keras, aside from VGG-16.

The models subjected to testing included VGG-19,

DenseNet-121, ResNet-152, RegNet-320X,

NASNetLarge, and ConvNextBase. Among these, the

VGG-19 model exhibited the highest efficiency with an

accuracy rate of 85%, while the other models failed in the

performance test due to their high percentages in training

and prediction losses.

CNN In Layers: Upon the completion of the transfer

learning process, the resulting model was recorded to have

an approximate size of 60 MB with an accuracy rate of

85%. When assessing the ratio of model size to its efficacy,

it is hypothesized that an evaluation and enhancement of

each layer's parameters could lead to improvements in at

least one of the outcomes, be it model size or accuracy rate.

In alignment with this hypothesis, instead of utilizing pre-

built models available within the Keras library, a

comprehensive model was constructed layer by layer

utilizing the model layers found in Keras. The ensuing

sections will detail each Keras layer utilized in the

development of the model, including explanations for their

selection and integration.

Keras-Sequential Layer: The Sequential layer serves as

a linear framework for Keras models, facilitating the

orderly compilation of the model's functional layers

according to their sequence of addition. It can be

conceptualized as a list specifying the layers to be

executed for the model (Figure 7).

Figure 7. Sequential Layer

Keras-Convolution Layer: The convolution layer is

instrumental in transforming the pixel values of an input

image through a convolution process, thereby generating a

"feature" matrix. During this process, a kernel matrix

traverses across the pixels of the image by its dimensions,

at each step multiplying its values with the current pixel

values of the image, summing these products, and

inscribing the result into an outcome matrix.

There are three critical parameters within the

convolution layer. The first parameter is the filter size,

which dictates the dimensions of the resulting feature

matrix. Consequently, setting the filter size too low or too

Yildiz et al., Intelligent Methods in Engineering Sciences 3(1): 022-036, 2024

- 28 -

high in relation to the input size can adversely affect the

learning process. The second significant parameter is the

kernel matrix size, represented by a pair of integers that

determine the dimensions of the matrix as it steps across

the image. A kernel matrix that is too large can consume

an excessive amount of computational power. Another

parameter of paramount importance in the convolution

layer is the activation function. This function is engaged

following the convolution operations between the kernel

matrix and the image, at the point when values are to be

recorded into the feature matrix. The results of the

convolution-processed values are relayed to this activation

function, whose output is then documented in the result

matrix. An example of a convolution layer can be seen in

the following illustration (Figure 8) [50].

Figure 8. Convolution Layer

Keras-BatchNormalization Layer: The batch

normalization layer normalizes its incoming inputs

towards a normal distribution, aiming to adjust the mean

of the data to zero and its standard deviation to one. This

layer behaves differently during training and prediction

phases; during training, it processes inputs dynamically

based on the output from the preceding layers, whereas,

during prediction, it utilizes fixed values obtained from the

training phase. The batch normalization process involves

calculating the mean and variance of the values entering

the batch layer. The current value is then subtracted by the

mean, and a constant epsilon number (~1x10^(-5)) is

added to the variance before dividing by the square root of

this sum. The resultant value is multiplied by a learned

gamma value and added to another learned value, beta

(Formula 5). The term "learned parameters" refers to the

ability of batch normalization to update these values

autonomously in response to incoming data during the

training period [51].

𝐵𝑁(𝑥) = 𝛾 ×
𝑥 − 𝑚𝑒𝑎𝑛(𝑥)

√(𝑣𝑎𝑟(𝑥)+∈)
+ 𝛽 (5)

Keras-Pooling Layer: The pooling layer reprocesses

the matrix given as input, using a pooling matrix of a

specified size. Among the most favored types of pooling

are max pooling, which selects the highest value, and

average pooling, which calculates the mean value within

the pool. In max pooling, the size of the pooling matrix is

typically 2x2, which means the image is scanned with a

2x2 matrix, and at each step, the highest value within that

kernel matrix is recorded into the result matrix (Figure 9)

(Max Pooling2D Layer*). Conversely, in average pooling,

the determined kernel matrix records the average of its

contents into the result matrix at each step (Figure 10)

(Average Pooling2D Layer*) [52].

Figure 9. Max Pooling Layer

Figure 10. Average Pooling Layer

Keras-Dropout Layer: The dropout layer nullifies the

input values at a predetermined rate. The input values of

the layers that are not zeroed are incremented by a factor

of 1/(1−rate)1/(1−rate). This mechanism ensures the

conservation of the total sum of inputs (Figure 11).

Yildiz et al., Intelligent Methods in Engineering Sciences 3(1): 022-036, 2024

- 29 -

Figure 11. Dropout Layer

Keras-Flatten Layer: The flatten layer reduces the

multi-dimensional input values to a single dimension,

thereby flattening the input. Consequently, this process

transforms the data into a format that can be processed by

fully connected layers.

Keras-Dense Layer: Fully connected layers are a

critical component of the neural network architecture,

constructed based on the numerical value entered as a

parameter. Each fully connected layer corresponds to a

network layer within the neural architecture. The

numerical parameter specified for each layer indicates the

number of artificial neurons in that layer.

Registration of the Trained Model in the Service and

AWS Services: In the initial sections of the materials and

methods, it was mentioned that from the plants specified—

apple, corn, wheat, tomato, tea, potato, and grape—tomato

and wheat were removed from the training and test

datasets for the training of the mentioned model. Due to

significant variations in the random data from the tomato

dataset, the model's predictive accuracy was notably

adversely affected. Consequently, the tomato dataset was

entirely removed from the training dataset. The

inconsistency in the size of the data from the wheat dataset,

coupled with the loss of the diseased portion that the model

needs to learn when dimensional normalization was

performed, necessitated its complete removal from the

training dataset as well. The model, trained with the

remaining classes, has been saved with a ".h5" extension.

The completed model has been uploaded to the AWS

Lambda platform for predictive operations, enabling its

use by the mobile application.

3.4. Cross-validation

Cross-validation is a method of data partitioning

employed to assess the generalization capability of models

and to prevent overfitting. Traditionally, the data splitting

approach reserves between 10-30% of the dataset for

testing, while 70-90% is allocated for training. If the

dataset is sufficiently large, the resulting training and

testing data will also be substantial, thereby enhancing the

reliability of the observed test error [53].

In the cross-validation system, the data is divided into 𝑖

segments. One segment is isolated for testing, and the

remaining 𝑖 − 1 segments are utilized for training.

Subsequently, the segment previously used for testing is

included in the training, another segment is set aside for

testing, and the model is retrained. This cycle continues

until each segment has participated in testing and the

training is complete, iterating 𝑖 times. Consequently, the

average of each classification outcome is calculated, and

this mean value is recorded as the measure of the

classification model's success [54, 55].

3.5. Confusion Matrix and Evaluation Metrics

The confusion matrix succinctly summarizes the actual

versus predicted classifications of a classification model in

a tabular format. This table displays the counts of instances

correctly and incorrectly classified by the model, thereby

providing a clearer understanding of the model's

performance [56-58].

The term true positive (TP) denotes the positive

examples that the model has correctly classified. Likewise,

the term true negative (TN) represents the negative

examples that have been accurately classified. The terms

false positive (FP) and false negative (FN), on the other

hand, refer to the positive and negative examples that the

model has misclassified, respectively [59, 60]. Table 1

presents a 5-class confusion matrix.

Yildiz et al., Intelligent Methods in Engineering Sciences 3(1): 022-036, 2024

- 30 -

Table 1. Five Class confusion matrix

PREDICTED

Bacterial Spot Early Blight Late Blight Healthy
Powdery

Mildew

ACTUAL

Bacterial Spot 𝐓𝟏 F12 F13 F14 F15

Early Blight F21 𝐓𝟐 F23 F24 F25

Late Blight F31 F32 𝐓𝟑 F34 F35

Healthy F41 F42 F43 𝐓𝟒 F45

Powdery

Mildew
F51 F52 F53 F54 𝐓𝟓

In addition to accuracy, precision, recall, F-score, and

specificity are other preferred metrics for evaluating the

performance of classification models [61]. The calculation

of performance metrics for 5 classes is provided in Table

2.

Table 2 Performance metrics equations for five-class.

METRICS EQUANTION

Average accuracy
𝑇𝑃𝑖 + 𝑇𝑁𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖 + 𝑇𝑁𝑖 + 𝐹𝑁𝑖

Average precision (P)
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖

Average recall (R)
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖

Average F-score
2 × 𝑃𝑖 × 𝑅𝑖

𝑃𝑖 + 𝑅𝑖

Average specificity
𝑇𝑁𝑖

𝐹𝑃𝑖 + 𝑇𝑁𝑖

4. Experiments and Results

In this study, it was investigated how feature extraction

and classification processes can be optimized through the

integration of deep learning and machine learning

techniques over a data set. Firstly, features were extracted

from the samples in the dataset using the VGG16 model,

which is one of the convolutional neural networks and is

widely accepted for visual feature extraction. This deep

learning model has shown high success, especially in the

analysis of visual content, and has found a wide range of

applications. The obtained characteristics were used for

comparative evaluation of the performance of five

different machine learning models - KNN, RF, SVM, NN

and LR. These models are widely preferred methods for

classification problems and have given successful results

in applications in various fields. The main purpose of the

study is to determine the most appropriate classification

model for the data set by evaluating the performance of

different machine learning algorithms on the same feature

set. This process lays the foundations of a methodology

that will be an important guide in model selection and can

be used in future studies. The results obtained are given in

Table 3.

Table 3. The results obtained from machine learning models as
a result of feature extraction

Model Accuracy F-

score

Precision Recall Specificity

SVM 0.812 0.811 0.813 0.812 0.761

KNN 0.889 0.887 0.891 0.889 0.859

Neural

Network

0.956 0.956 0.956 0.956 0.943

Random

Forest

0.888 0.888 0.888 0.888 0.856

Logistic

Regression

0.897 0.897 0.898 0.897 0.869

This dataset presents a comparative analysis of various

classification models based on metrics like Accuracy, F-

score, Precision, Recall, and Specificity. The Neural

Network model demonstrates superior performance across

all metrics, with an impressive accuracy and F-score of

0.956, suggesting its exceptional capability in both

precision and handling true positives. Close behind, the

Logistic Regression model shows high efficiency,

particularly in balancing precision and recall, evidenced by

its nearly uniform scores across the metrics, culminating

in an accuracy of 0.897. The KNN and Random Forest

models exhibit commendable performance, with

accuracies around 0.889, indicating their reliability in

classification tasks. The SVM model, while slightly

lagging in accuracy at 0.812, still provides a solid baseline

for comparison. Overall, these results highlight the

strengths and potential areas for improvement of each

model in handling classification tasks, with the Neural

Network model standing out for its robustness and

effectiveness.

The model's architectural framework has been

meticulously refined to an optimal level through a series

of experimental combinations. To elucidate this process in

straightforward terms, the procedure begins with the

transformation of incoming data into a format amenable to

processing. This is followed by the execution of an image

prediction task, employing a model that is dynamically

fetched from the S3 storage service. Finally, the outcome

of this predictive analysis is disseminated back to the

requester through an API interface. The schematic

representation of the AWS Lambda Prediction Function is

depicted in Figure 12, providing a visual overview of this

Yildiz et al., Intelligent Methods in Engineering Sciences 3(1): 022-036, 2024

- 31 -

integrated workflow.

Figure 12. AWS Lambda Prediction Function
The table delineates a subset of models that have

undergone training for the tomato plant dataset, exhibiting

both significant variations and satisfactory outcomes in

their results. These models include VGG-16 and variants

of HM-batch(N) with varying hyperparameters, as detailed

in the associated training conditions. It's worth noting that

the total number of tests conducted exceeds the quantity

presented in the table. In this study, we categorize our

dataset into four distinct sizes—Extra Large (XL), Small

(S), Medium (M), and Large (L)—to systematically

evaluate the impact of data volume on our analysis and

outcomes. This selection has been made to highlight

models that provide a representative overview of the

experimental conditions and outcomes (Table 3).

The provided table (Table 4) delineates a

comprehensive evaluation of various deep learning models

tailored for tomato plant disease detection, detailing their

respective performance metrics and training conditions.

The VGG-16 models, occupying the initial two rows of the

table, demonstrate a substantial range in both training and

prediction accuracy, indicating variability in performance

which may be attributed to different data volume (XL for

't-1' and S for 't-2') or perhaps parameter tuning. Despite

the smaller dataset, 't-2' yields a higher prediction

accuracy, a testament to VGG-16’s robustness or possibly

more refined training iterations.

Subsequent entries reveal a consistent use of a hybrid

model, hereafter referred to as HM-batch(N), across a

variety of dataset sizes (S to L). The HM-batch(N) exhibits

a commendable consistency in training and prediction

accuracy, especially in instances 't-5' through 't-13', where

the model achieves over 90% prediction accuracy, a clear

indication of the model’s effectiveness in generalizing

from the given data.

Additionally, the table highlights the disparities in

training duration ranging from a mere 9 seconds to an

extensive 906 seconds, suggesting that the models'

computational demands vary significantly, possibly

reflecting the complexity of the model architecture or the

efficiency of the training process.

In analyzing training and prediction losses, the HM-

batch(N) models maintain a relatively stable loss, with

minor variations that do not seem to correlate directly with

the size of the training data. This stability in loss metrics

may point to a well-regularized model that is resistant to

overfitting despite the volume of training data.

The model’s configurations and the corresponding

training times suggest a trade-off between model

complexity and training efficiency. Models with shorter

training times may benefit from simplified architectures or

reduced parameter spaces, while those requiring longer

training periods likely capitalize on more complex feature

representations, which could be essential for capturing

nuanced patterns within the data.

In summary, the collated data presented in the table

provides valuable insights into the relative performance of

different models under varying conditions, serving as a

crucial reference for selecting the most appropriate model

configuration for real-world application in the domain of

plant disease classification. The evaluations conducted

provide a substantial foundation for further refinement and

optimization of deep learning models in agricultural

Yildiz et al., Intelligent Methods in Engineering Sciences 3(1): 022-036, 2024

- 32 -

technology.

Table 4. The Results of the Trained Models

Test Series Training
Accuracy

Predicted
Accuracy

Training
Loss

Predicted
Loss

Training
Time

Model Structure Amount of
Data

t-1 89.95 88.46 25.30 22.80 85 VGG-16 XL

t-2 86.77 90.90 32.99 65.98 682 VGG-16 S

t-3 93.83 64.14 17.17 92.39 8 ResNet152V2 S

t-4 93.97 64.86 16.78 84.72 9 HM-batchN() M

t-5 96.79 91.84 13.20 18.20 85 HM-batchN() M

t-6 81.84 82.89 45.65 43.57 76 HM-batchN() L

t-7 96.79 91.87 13.19 18.98 84 HM-batchN() L

t-8 96.90 95.90 13.18 13.60 84 HM-batchN() L

t-9 96.98 95.90 13.17 13.40 84 HM-batchN() L

t-10 96.87 96.94 15.32 15.32 97 HM-batchN() L

t-11 96.73 95.03 13.20 13.20 84 HM-batchN() L

t-12 97.04 96.83 13.16 13.13 112 HM-batchN() L

t-13 94.53 98.05 14.47 36.54 906 HM-batchN() L

The confusion matrix given in Figure 13 is used to

evaluate the prediction success of a model and represents

the average of the performances of the t-12 training test

and the t-13 prediction test. The matrix includes five

different classes: 'Healthy', 'Late Blight', 'Early Blight',

'Bacterial Spot', and 'Powdery Mildew'. The model

correctly classified the 'Healthy' class 7,248 times, 'Late

Blight' 7,934 times, 'Early Blight' 4,794 times, 'Bacterial

Spot' 8,956 times and 'Powdery Mildew' 1,200 times.

These values show that the percentage of correct

predictions of the model for each class is quite high.

However, Deceptions between the 'Late Blight' and

'Bacterial Spot' classes are notable; for example, 'Bacterial

Spot' has been misclassified as 'Late Blight' 384 times. In

addition, 'Healthy' plants have a relatively low number of

false positive and false negative results, which shows that

the model distinguishes this class better than others. In

general, the model was able to Decipher with high

accuracy, but improvements can be made to reduce

confusion between some classes.

Figure 13. The Complexity Matrix of the Model Written in
Layers is

This predictive service has been meticulously designed

to interface with a mobile application (Figure 14) via an

API connection, the application itself being developed

with Flutter and Dart. This sophisticated application is

specifically tailored for the classification of tomato leaf

diseases, integrating cutting-edge machine learning

models to facilitate rapid and accurate diagnosis.

In conclusion, the amalgamation of the most efficacious

layers from tests t-12 and t-13 into a singular model has

culminated in an exemplary display of classification

proficiency, achieving an approximate accuracy of 96%.

This achievement is significant, considering the model

underwent a meticulous training regimen over

approximately 10 hours and was validated across a dataset

comprising some 33,000 entries. Comparative analysis

among diverse classification methodologies—

encompassing Neural Networks, Logistic Regression,

KNN, Random Forest, and SVM—underscores the Neural

Network's paramount performance, distinguished by its

unparalleled accuracy and F-score of 0.956. This metric

evidences the model's exceptional capability in precision

and true positive handling. Subsequent models, including

Logistic Regression, KNN, and Random Forest, also

exhibit laudable performance metrics, thereby affirming

their applicability and reliability in classification tasks,

albeit with the SVM model trailing slightly in terms of

accuracy.

This scholarly inquiry not only delineates the potency

of deep learning through the lens of Neural Network

superiority but also illuminates the nuanced performance

characteristics across a spectrum of traditional and

contemporary classification models. It thereby contributes

to the academic discourse on predictive modeling,

advocating for a nuanced approach to model selection and

optimization predicated on comprehensive performance

evaluation. This research underscores the pivotal role of

strategic layer integration in bolstering model

performance, thereby charting a path for future

explorations into predictive accuracy and model efficiency

in the realm of machine learning.

Drawing on the robust foundation of the VGG-16

architecture, the application has been optimized for mobile

deployment, ensuring that the complexities of deep neural

networks are seamlessly adapted to the constraints and

operational paradigms of mobile devices. This

optimization entails not only the model’s conversion to a

Yildiz et al., Intelligent Methods in Engineering Sciences 3(1): 022-036, 2024

- 33 -

mobile-compatible format but also its synchronization

with the mobile application to provide real-time predictive

analytics.

The harmonization of the application with the VGG-16

model-based service exemplifies the confluence of mobile

technology and artificial intelligence in the pursuit of

agricultural health. This synergy allows for the immediate

processing and classification of tomato plant diseases,

presenting a significant advancement in agricultural

informatics. The utility of such an application lies in its

ability to offer immediate, field-level diagnostic support to

farmers and agronomists, thereby enabling informed

decision-making that can lead to timely and effective

disease management interventions.

In essence, the developed mobile application serves as

an exemplar of how machine learning can be leveraged in

practical, user-oriented scenarios, bringing the profound

capabilities of AI to the fingertips of users in diverse

environments. The integration of such technology into the

agricultural domain paves the way for smarter, data-driven

approaches to crop management and disease prevention,

ultimately contributing to the sustainability and efficiency

of food production systems.

Figure 14. Mobile Application Screens

5. Conclusion
In this comprehensive study, we employed

Convolutional Neural Networks (CNN), particularly the

Yildiz et al., Intelligent Methods in Engineering Sciences 3(1): 022-036, 2024

- 34 -

VGG16 model, alongside various machine learning

algorithms such as KNN, RF, SVM, NN, and LR, to

optimize the feature extraction and classification processes

for tomato leaf disease detection. The neural network

model, in particular, exhibited exceptional performance,

achieving an accuracy and F-score of 0.956, standing out

among the evaluated models. This high level of accuracy

underscores the neural network's capabilities in precision

and managing true positives effectively. Following

closely, the Logistic Regression, KNN, and Random

Forest models also showed commendable performance

with accuracy rates around 0.897 and 0.889, respectively,

proving their reliability in classification tasks. The

integration of these models with a mobile application

demonstrates a practical approach to applying advanced

computational models in agricultural settings, facilitating

timely and accurate disease detection. This research not

only highlights the potential of combining deep learning

with traditional machine learning techniques but also sets

a benchmark for future studies in agricultural informatics

and disease management.

The integration of intensive learning styles, such as deep

learning, with lightweight hardware components found in

mobile applications, heralds a promising avenue for

powerful yet accessible solutions. Enhancing the

application's user interface with a history section on the

result page can render it more user-friendly, allowing for

in-field utility and storage of historical data, which can be

preserved in conjunction with external storage for long-

term analysis. The choice to save results and the

determination of the save location would be at the user’s

discretion, with the default being the last used storage unit.

Individual growers cultivating such plants in their pots

or backyard gardens can also protect their produce by

utilizing a mobile application on their personal devices.

This system offers both types of users—a commercial

grower and a private individual—a swift, efficient, and

cost-effective means of disease monitoring.

Given that spraying operations via sensor monitoring

and professional support can be economically

burdensome, some producers opt for regular pesticide

applications. However, this can reduce the nutritional

value of plants due to unnecessary chemical exposure and

consequently pose risks to consumer health. Additionally,

excessive application of chemicals may not only affect the

plant itself but also degrade the quality of the cultivated

land over time. With the deployment of this application,

rather than conducting preemptive and unnecessary

spraying, treatment can be initiated precisely when the

initial signs of disease are detected.

For future enhancements, a model offering greater

control over hyperparameters could be employed.

Improvements in both image processing methods and

precise hyperparameter tuning will significantly enhance

the quality of the model used within the service. While the

depth of the model and the power of each model layer

usually have a directly proportional effect on the success

of the model, overly deep networks and excessively

complex layers can complicate model training due to their

high computational demands. One of the primary

objectives of the project is to maintain the model's agility

for mobile execution with minimal power loss, even if

predictions are conducted through a service-based model.

Therefore, any enhancements in hyperparameters and

depth must keep the model size within a specified range to

preserve its lightweight nature for mobile utility.

Acknowledgments

This article was extracted from the project numbered

1919B012221354 carried out within the scope of

TUBITAK 2209/A UNIVERSITY STUDENTS

RESEARCH PROJECTS SUPPORT PROGRAM.

Compliance with ethics requirements

This study does not contain any studies with human

participants or animals performed by any of the authors.

Availability of Supporting Data

The dataset used in this study, which was performed to

help diagnose tomato plant leaf diseases, can be accessed

at https://www.kaggle.com/datasets/ashishmotwani/

tomato and https://www.kaggle.com/datasets

/kaustubhb999 /tomatoleaf/data.

Declaration of Competing Interest

The authors declare that they have no known competing

financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

References

[1] Thangaraj, R., S. Anandamurugan, P. Pandiyan, and V.K.

Kaliappan, Artificial intelligence in tomato leaf disease

detection: a comprehensive review and discussion. Journal of

Plant Diseases and Protection, 2022. 129(3): p. 469-488. DOI:

10.1007/s41348-021-00500-8.

[2] Joosten, F., Y. Dijkxhoorn, Y. Sertse, and R. Ruben, How does

the fruit and vegetable sector contribute to food and nutrition

security? 2015, LEI. DOI: 10.32604/iasc.2021.016415.

[3] Tarek, H., H. Aly, S. Eisa, and M. Abul-Soud, Optimized deep

learning algorithms for tomato leaf disease detection with

hardware deployment. Electronics, 2022. 11(1): p. 140. DOI:

10.3390/electronics11010140.

[4] Schreinemachers, P., E.B. Simmons, and M.C. Wopereis,

Tapping the economic and nutritional power of vegetables.

Global food security, 2018. 16: p. 36-45. DOI:

10.1016/j.gfs.2017.09.005.

[5] Han, L., M.S. Haleem, and M. Taylor. A novel computer vision-

based approach to automatic detection and severity assessment

of crop diseases. in 2015 Science and Information Conference

(SAI). 2015. IEEE. DOI: 10.1109/SAI.2015.7237209.

[6] Zhang, S., Y. Shang, and L. Wang, Plant disease recognition

based on plant leaf image. 2015.

[7] Trivedi, N.K., V. Gautam, A. Anand, H.M. Aljahdali, S.G.

Villar, D. Anand, N. Goyal, and S. Kadry, Early detection and

classification of tomato leaf disease using high-performance

deep neural network. Sensors, 2021. 21(23): p. 7987. DOI:

10.3390/s21237987.

[8] Gadade, H.D. and D. Kirange. Machine learning based

Yildiz et al., Intelligent Methods in Engineering Sciences 3(1): 022-036, 2024

- 35 -

identification of tomato leaf diseases at various stages of

development. in 2021 5th International Conference on

Computing Methodologies and Communication (ICCMC).

2021. IEEE. DOI: 10.1109/ICCMC51019.2021.9418263.

[9] Agarwal, M., A. Singh, S. Arjaria, A. Sinha, and S. Gupta,

ToLeD: Tomato leaf disease detection using convolution

neural network. Procedia Computer Science, 2020. 167: p. 293-

301. DOI: 10.1016/j.procs.2020.03.225.

[10] Ashok, S., G. Kishore, V. Rajesh, S. Suchitra, S.G. Sophia, and

B. Pavithra. Tomato leaf disease detection using deep learning

techniques. in 2020 5th International Conference on

Communication and Electronics Systems (ICCES). 2020. IEEE.

DOI: 10.1109/ICCES48766.2020.9137986.

[11] Kaushik, M., P. Prakash, R. Ajay, and S. Veni. Tomato leaf

disease detection using convolutional neural network with data

augmentation. in 2020 5th International Conference on

Communication and Electronics Systems (ICCES). 2020. IEEE.

DOI: 10.1109/ICCES48766.2020.9138030.

[12] Jiang, D., F. Li, Y. Yang, and S. Yu. A tomato leaf diseases

classification method based on deep learning. in 2020 chinese

control and decision conference (CCDC). 2020. IEEE. DOI:

10.1109/CCDC49329.2020.9164457.

[13] Das, D., M. Singh, S.S. Mohanty, and S. Chakravarty. Leaf

disease detection using support vector machine. in 2020

International Conference on Communication and Signal

Processing (ICCSP). 2020. IEEE. DOI:

10.1109/ICCSP48568.2020.9182128.

[14] Wang, X. and J. Liu, Tomato anomalies detection in

greenhouse scenarios based on YOLO-Dense. Frontiers in

Plant Science, 2021. 12: p. 634103. DOI:

10.3389/fpls.2021.634103.

[15] Kibriya, H., R. Rafique, W. Ahmad, and S. Adnan. Tomato leaf

disease detection using convolution neural network. in 2021

International Bhurban Conference on Applied Sciences and

Technologies (IBCAST). 2021. IEEE. DOI:

10.1109/IBCAST51254.2021.9393311.

[16] Kursun, R., K.K. Bastas, and M. Koklu, Segmentation of dry

bean (Phaseolus vulgaris L.) leaf disease images with U-Net

and classification using deep learning algorithms. European

Food Research and Technology, 2023. 249(10): p. 2543-2558.

DOI: 10.1007/s00217-023-04319-5.

[17] Anandhakrishnan, T. and S. Jaisakthi, Deep Convolutional

Neural Networks for image based tomato leaf disease detection.

Sustainable Chemistry and Pharmacy, 2022. 30: p. 100793.

DOI: https://doi.org/10.1016/j.scp.2022.100793.

[18] Rahman, S.U., F. Alam, N. Ahmad, and S. Arshad, Image

processing based system for the detection, identification and

treatment of tomato leaf diseases. Multimedia Tools and

Applications, 2023. 82(6): p. 9431-9445. DOI:

10.1007/s11042-022-13715-0.

[19] Janarthan, S., S. Thuseethan, S. Rajasegarar, and J. Yearwood,

P2OP—Plant Pathology on Palms: A deep learning-based

mobile solution for in-field plant disease detection. Computers

and Electronics in Agriculture, 2022. 202: p. 107371. DOI:

10.1016/j.compag.2022.107371.

[20] Sujatha, R., J.M. Chatterjee, N. Jhanjhi, and S.N. Brohi,

Performance of deep learning vs machine learning in plant leaf

disease detection. Microprocessors and Microsystems, 2021.

80: p. 103615. DOI: 10.1016/j.micpro.2020.103615.

[21] Sardogan, M., A. Tuncer, and Y. Ozen. Plant leaf disease

detection and classification based on CNN with LVQ algorithm.

in 2018 3rd international conference on computer science and

engineering (UBMK). 2018. IEEE. DOI:

10.1109/UBMK.2018.8566635.

[22] Harakannanavar, S.S., J.M. Rudagi, V.I. Puranikmath, A.

Siddiqua, and R. Pramodhini, Plant leaf disease detection using

computer vision and machine learning algorithms. Global

Transitions Proceedings, 2022. 3(1): p. 305-310. DOI:

10.1016/j.gltp.2022.03.016.

[23] De Luna, R.G., E.P. Dadios, and A.A. Bandala. Automated

image capturing system for deep learning-based tomato plant

leaf disease detection and recognition. in TENCON 2018-2018

IEEE Region 10 Conference. 2018. IEEE. DOI:

10.1109/TENCON.2018.8650088.

[24] Deng, Y., H. Xi, G. Zhou, A. Chen, Y. Wang, L. Li, and Y. Hu,

An effective image-based tomato leaf disease segmentation

method using MC-UNet. Plant Phenomics, 2023. 5: p. 0049.

DOI: 10.34133/plantfenomik.0049.

[25] Ally, N.M., H. Neetoo, V.M. Ranghoo-Sanmukhiya, and T.A.

Coutinho, Greenhouse-grown tomatoes: microbial diseases

and their control methods: a review. International Journal of

Phytopathology, 2023. 12(1): p. 99-127. DOI:

10.33687/phytopath.012.01.4273.

[26] Soto-Caro, A., G.E. Vallad, K.V. Xavier, P. Abrahamian, F.

Wu, and Z. Guan, Managing bacterial spot of tomato: do

chemical controls pay off? Agronomy, 2023. 13(4): p. 972.

DOI: 10.3390/agronomy13040972.

[27] Sharma, S. and K. Bhattarai, Progress in developing bacterial

spot resistance in tomato. Agronomy, 2019. 9(1): p. 26. DOI:

10.3390/agronomy9010026.

[28] GM, S.K., S. Sriram, R. Laxman, and K. Harshita, Tomato late

blight yield loss assessment and risk aversion with resistant

hybrid. Journal of Horticultural Sciences, 2022. 17(2): p. 411-

416. DOI: 10.24154/jhs.v17i2.1105.

[29] Hong, Y.-H., J. Meng, X.-L. He, Y.-Y. Zhang, and Y.-S. Luan,

Overexpression of MiR482c in tomato induces enhanced

susceptibility to late blight. Cells, 2019. 8(8): p. 822. DOI:

10.3390/cells8080822.

[30] Sunarti, S., C. Kissoudis, Y. Van Der Hoek, H. Van Der Schoot,

R.G. Visser, V. Der Linden, C. Gerard, C. Van De Wiel, and Y.

Bai, Drought stress interacts with powdery mildew infection in

tomato. Frontiers in Plant Science, 2022. 13: p. 845379. DOI:

10.3389/fpls.2022.845379.

[31] Wang, H., W. Gong, Y. Wang, and Q. Ma, Contribution of a

WRKY transcription factor, ShWRKY81, to powdery mildew

resistance in wild tomato. International Journal of Molecular

Sciences, 2023. 24(3): p. 2583. DOI: 10.3390/ijms24032583.

[32] Gupta, V., V. Razdan, S. Sharma, and K. Fatima, Progress and

severity of early blight of tomato in relation to weather

variables in Jammu province. Journal of Agrometeorology,

2020. 22(2): p. 198-202. DOI: 10.54386/jam.v22i2.168.

[33] Koklu, M., R. Kursun, E.T. Yasin, and Y.S. Taspinar.

Detection of Defects in Soybean Seeds by Extracting Deep

Features with SqueezeNet. in 2023 IEEE 12th International

Conference on Intelligent Data Acquisition and Advanced

Computing Systems: Technology and Applications (IDAACS).

2023. DOI: 10.1109/IDAACS58523.2023.10348939.

[34] Torres, G.d.O., M.X. Guterres, and V.R.R. Celestino, Legal

actions in Brazilian air transport: A machine learning and

multinomial logistic regression analysis. Frontiers in Future

Transportation, 2023. 4: p. 1070533. DOI:

10.3389/ffutr.2023.1070533.

[35] Kursun, R., I. Cinar, Y.S. Taspinar, and M. Koklu. Flower

Recognition System with Optimized Features for Deep

Features. in 2022 11th Mediterranean Conference on

Embedded Computing (MECO). 2022. DOI:

10.1109/MECO55406.2022.9797103.

[36] Cakir, M., M. Yilmaz, M.A. Oral, H.O. Kazanci, and O. Oral,

Accuracy assessment of RFerns, NB, SVM, and kNN machine

learning classifiers in aquaculture. Journal of King Saud

University-Science, 2023. 35(6): p. 102754. DOI:

10.1016/j.jksus.2023.102754.

[37] Koklu, M. and K. Sabancı, International Journal of Intelligent

Systems and Applications in Engineering, 2016. 4(Special

Issue-1): p. 249-251. DOI: 10.18201/ijisae.281901.

[38] Cen, H., D. Huang, Q. Liu, Z. Zong, and A. Tang, Application

Research on Risk Assessment of Municipal Pipeline Network

Based on Random Forest Machine Learning Algorithm. Water,

2023. 15(10): p. 1964. DOI: 10.3390/w15101964.

[39] Butuner, R., I. Cinar, Y.S. Taspinar, R. Kursun, M.H. Calp, and

M. Koklu, Classification of deep image features of lentil

varieties with machine learning techniques. European Food

Research and Technology, 2023. 249(5): p. 1303-1316. DOI:

10.1007/s00217-023-04214-z.

[40] Taspinar, Y.S., I. Cinar, and M. Koklu, Prediction of computer

type using benchmark scores of hardware units. Selcuk

University Journal of Engineering Sciences, 2021. 20(1): p. 11-

17.

Yildiz et al., Intelligent Methods in Engineering Sciences 3(1): 022-036, 2024

- 36 -

[41] Pisner, D.A. and D.M. Schnyer, Support vector machine, in

Machine learning. 2020, Elsevier. p. 101-121. DOI:

10.1016/B978-0-12-815739-8.00006-7.

[42] Tutuncu, K., I. Cinar, R. Kursun, and M. Koklu. Edible and

Poisonous Mushrooms Classification by Machine Learning

Algorithms. in 2022 11th Mediterranean Conference on

Embedded Computing (MECO). 2022. DOI:

10.1109/MECO55406.2022.9797212.

[43] Agatonovic-Kustrin, S. and R. Beresford, Basic concepts of

artificial neural network (ANN) modeling and its application

in pharmaceutical research. Journal of pharmaceutical and

biomedical analysis, 2000. 22(5): p. 717-727. DOI:

10.1016/S0731-7085(99)00272-1.

[44] Kursun, R., E.T. Yasin, and M. Koklu, The Effectiveness of

Deep Learning Methods on Groundnut Disease Detection.

[45] Geng, L., S. Zhang, J. Tong, and Z. Xiao, Lung segmentation

method with dilated convolution based on VGG-16 network.

Computer Assisted Surgery, 2019. 24(sup2): p. 27-33. DOI:

10.1080/24699322.2019.1649071.

[46] Kursun, R. and M. Koklu. Enhancing Explainability in Plant

Disease Classification using Score-CAM: Improving Early

Diagnosis for Agricultural Productivity. in 2023 IEEE 12th

International Conference on Intelligent Data Acquisition and

Advanced Computing Systems: Technology and Applications

(IDAACS). 2023. DOI:

10.1109/IDAACS58523.2023.10348713.

[47] Dubey, A.K. and V. Jain. Comparative study of convolution

neural network’s relu and leaky-relu activation functions. in

Applications of Computing, Automation and Wireless Systems

in Electrical Engineering: Proceedings of MARC 2018. 2019.

Springer. DOI: 10.1007/978-981-13-6772-4_76.

[48] Waoo, A.A. and B.K. Soni. Performance analysis of sigmoid

and relu activation functions in deep neural network. in

Intelligent Systems: Proceedings of SCIS 2021. 2021. Springer.

DOI: 10.1007/978-981-16-2248-9_5.

[49] Gulli, A. and S. Pal, Deep learning with Keras. 2017: Packt

Publishing Ltd.

[50] Albawi, S., T.A. Mohammed, and S. Al-Zawi. Understanding

of a convolutional neural network. in 2017 international

conference on engineering and technology (ICET). 2017. Ieee.

DOI: 10.1109/ICEngTechnol.2017.8308186.

[51] Kolarik, M., R. Burget, and K. Riha. Comparing Normalization

Methods for Limited Batch Size Segmentation Neural Networks.

in 2020 43rd International Conference on Telecommunications

and Signal Processing (TSP). 2020. DOI:

10.1109/TSP49548.2020.9163397.

[52] Ebert-Uphoff, I., R. Lagerquist, K. Hilburn, Y. Lee, K. Haynes,

J. Stock, C. Kumler, and J.Q. Stewart, CIRA Guide to Custom

Loss Functions for Neural Networks in Environmental

Sciences--Version 1. arXiv preprint arXiv:2106.09757, 2021.

[53] Berrar, D., Cross-validation. 2019.

[54] Xu, Y. and R. Goodacre, On splitting training and validation

set: a comparative study of cross-validation, bootstrap and

systematic sampling for estimating the generalization

performance of supervised learning. Journal of analysis and

testing, 2018. 2(3): p. 249-262. DOI: 10.1007/s41664-018-

0068-2.

[55] Isik, M., B. Ozulku, R. Kursun, Y.S. Taspinar, I. Cinar, E.T.

Yasin, and M. Koklu, Automated classification of hand-woven

and machine-woven carpets based on morphological features

using machine learning algorithms. The Journal of The Textile

Institute: p. 1-10. DOI: 10.1080/00405000.2024.2309694.

[56] Deepak, S. and P. Ameer, Brain tumor classification using

deep CNN features via transfer learning. Computers in biology

and medicine, 2019. 111: p. 103345. DOI:

10.1016/j.compbiomed.2019.103345.

[57] Gencturk, B., S. Arsoy, Y.S. Taspinar, I. Cinar, R. Kursun, E.T.

Yasin, and M. Koklu, Detection of hazelnut varieties and

development of mobile application with CNN data fusion

feature reduction-based models. European Food Research and

Technology, 2024. 250(1): p. 97-110. DOI: 10.1007/s00217-

023-04369-9.

[58] Taspinar, Y.S., M. Koklu, and M. Altin, Classification of flame

extinction based on acoustic oscillations using artificial

intelligence methods. Case Studies in Thermal Engineering,

2021. 28: p. 101561. DOI: doi.org/10.1016/j.csite.2021.101561.

[59] Koklu, M., R. Kursun, Y.S. Taspinar, and I. Cinar,

Classification of date fruits into genetic varieties using image

analysis. Mathematical Problems in Engineering, 2021. 2021:

p. 1-13. DOI: 10.1155/2021/4793293.

[60] Yasin, E.T., I.A. Ozkan, and M. Koklu, Detection of fish

freshness using artificial intelligence methods. European Food

Research and Technology, 2023. 249(8): p. 1979-1990. DOI:

10.1007/s00217-023-04271-4.

[61] Taspinar, Y.S., I. Cinar, R. Kursun, and M. Koklu, Monkeypox

Skin Lesion Detection with Deep Learning Models and

Development of Its Mobile Application. Public health. 500: p.

5.

