
Intelligent Methods in Engineering Sciences 3(4): 108-117, 2024

INTELLIGENT METHODS

IN ENGINEERING SCIENCES

https://www.imiens.org

International

Open Access

December, 2024

e-ISSN 2979-9236

Research Article https://doi.org/10.58190/imiens.2024.113

* Corresponding Author: asaday@selcuk.edu.tr

Comparison of Data Reduction Algorithms for Real-Time Data Processing in

Embedded Systems

Abdulkadir SADAY a,* , Süleyman CANAN b , İbrahim E. DERE b

a Department of Electrical and Electronics Engineering, Selcuk University, Konya, Türkiye
b Elfatek Elektronik Ltd Sti, Konya, Türkiye

 ARTICLE INFO ABSTRACT

Article history:

Received 21 November 2024

Accepted 30 December 2024

 In embedded systems, large datasets are difficult to process in real-time due to limited processing
power, memory capacity, and energy resources. In order to solve these difficulties, the use of

algorithms that reduce data size and complexity has become a critical requirement. This study

examines the techniques of five algorithms used for data reduction in embedded systems. The
techniques of dimensionality reduction, numerosity reduction, data compression, data cube

aggregation, and discretization algorithms are applied to a dataset. The dataset consists of load and

angle data recorded every five seconds for three months. The selected data reduction techniques

are evaluated to reduce data processing load, optimize storage requirements, and reduce energy
consumption. The results show that each algorithm offers advantages according to different

application requirements. The findings obtained in this study provide a guiding framework for the

optimization of data processing processes in embedded systems. The results provide important

information that can help system designers select algorithms suitable for application requirements.
In the future, combining these algorithms with hybrid approaches can further increase the data

processing capacity and efficiency of embedded systems.

This is an open access article under the CC BY-SA 4.0 license.

(https://creativecommons.org/licenses/by-sa/4.0/)

Keywords:

big-data processing,

data reduction,

embedded systems,

real-time process

1. Introduction

Embedded systems are specialized systems with

hardware and software components designed to perform a

specific task. They are widely used in many areas, from

automotive to health and defense to industrial automation,

and often require real-time data processing [1]. While

these systems try to overcome high data flow and complex

algorithms, they also struggle with limited processing

power, memory, and energy constraints [2]. In recent

years, the rapid development of sensor technologies and

the widespread use of IoT (Internet of Things) applications

have made the concept of big data even more important.

The increasing demands for instant data sharing and

processing of embedded devices over networks are

straining the data communication bandwidth and storage

areas in embedded systems [2, 3]. These challenges clearly

reveal the need for data reduction algorithms to reduce

data volume to manageable sizes and improve system

performance.

In embedded systems, processing power, and memory

resources are quite limited compared to desktop computers

or servers. Therefore, it is often not possible to process

high volumes of data in raw form [4]. Sensors (LiDAR,

radar, camera, etc.) used in autonomous vehicles produce

large amounts of data. Real-time processing of this data

directly affects not only the processor speed and memory

capacity of the system but also energy consumption.

Similarly, wearable devices or patient monitoring systems

used in healthcare also need methods to optimize data

transfer and recording processes due to battery life

constraints during data processing [5, 6].

In light of these requirements, data reduction techniques

are used to reduce data size, eliminate unnecessary or

duplicate information, and create more compact data

structures with preserved important features. Thus, both

data storage and data transfer costs are significantly

reduced, and the system's real-time decision-making

ability is supported [7].

Data reduction methods can be classified as lossy or

lossless. In lossless methods, the compressed data obtained

can match the original one-to-one, while in lossy methods.

However, the data size has been reduced, and it can be

observed that some information has been irreversibly lost.

In the context of embedded systems, the methods used are

usually directly related to the criticality of the application

and data integrity requirements. For example, while

lossless compression methods are preferred when working

on medical data, lossy methods can mostly be adopted in

industrial sensor data or high-volume image/video data

https://doi.org/10.58190/imiens.2024.113
https://creativecommons.org/licenses/by-sa/4.0/
https://orcid.org/0000-0002-0406-711X
https://orcid.org/0000-0001-5842-5683
https://orcid.org/0009-0001-5804-0684

Saday et al., Intelligent Methods in Engineering Sciences 3(4): 108-117, 2024

- 109 -

[8].

Data reduction techniques are examined in various

categories in the literature. Dimensionality Reduction

extracts the basic components from high-dimensional data

and represents the information in fewer dimensions. For

example, PCA (Principal Component Analysis) and LDA

(Linear Discriminant Analysis) can provide effective

results even with limited processing power in embedded

applications [9]. Numerosity Reduction detects repetitions

or similarities in the data and eliminates unnecessary data

points. This method is especially important in applications

where sensor data is frequently sampled [10]. Data

Compression reduces data size with lossy or lossless

compression algorithms. In addition to classical methods

such as Huffman, LZ77, and RLE (Run-Length Encoding),

special compression solutions are optimized for embedded

systems [11]. Data Cube Aggregation summarizes data by

performing aggregation (sum, average, maximum, etc.) on

certain dimensions in multi-dimensional datasets. It is

frequently preferred, especially in large data warehouses

and some IoT platforms [12]. Discretization Operation

reduces the data volume by dividing continuous-valued

data points into certain discrete intervals (binning,

histogram, etc.). In this way, both memory and processing

load can be significantly reduced [13].

In studies where these methods are used together or in a

hybrid manner, it has been observed that data reduction

performance is significantly improved, and application-

specific requirements are met more effectively [7, 14]. For

example, in image processing-based embedded systems,

dimensionality reduction (PCA) and lossy compression

(like JPEG) are common approaches. In this way, both the

size of the data is reduced, and the accuracy of the

classification or detection algorithms (e.g. machine

learning, deep learning) is preserved.

This article provides a systematic review of data

reduction algorithms that can be used to improve real-time

data processing in embedded systems. Considering the

constraints of embedded systems, such as processing

power, memory, and energy, the factors that guide the

selection of data reduction algorithms are discussed. The

performance of different data reduction methods

(dimensionality reduction, numerosity reduction, data

cube aggregation, data compression, discretization) in

specific application scenarios is monitored.

The rest of the article discusses the need for real-time

data processing in embedded systems and the related

challenges. Then, data reduction methods widely adopted

in the literature are introduced, and their advantages,

disadvantages, and application examples are presented.

Then, these methods are compared in the context of certain

performance criteria (processing time, memory usage,

accuracy, energy consumption). The last section discusses

future research directions, integration of data reduction

algorithms with artificial intelligence, and suggestions for

embedded system designers.

2. Real-Time Data Processing in Embedded
Systems

Real-time data processing in embedded systems

presents several challenges at both hardware and software

levels. These systems usually have limited processing

power, memory capacity, and energy resources, making it

difficult to perform complex operations in real-time. The

need to meet time constraints requires that operations be

completed within a certain time, which makes it difficult

to ensure system reliability, especially in the case of

unpredictable data flows or external interruptions. In

addition, ensuring the accuracy and consistency of data

from sensors, solving synchronization problems, and

managing potential errors pose significant technical

hurdles in the application development process. The fact

that embedded systems are usually special purpose makes

application development processes more complex by

limiting the ability to utilize standardized solutions. These

challenges significantly affect the design and integration

of real-time data processing systems.

2.1. Embedded Systems

Embedded systems consist of hardware and software

components customized to perform a specific function or

a set of related functions. These systems, usually built on

a single microprocessor or microcontroller and operating

under constraints such as limited memory, limited

processing power and energy consumption, have a

narrower application area than a complex desktop or server

architecture [1]. For example, an automobile engine

control unit (ECU) processes data from certain sensors in

real-time and regulates the operation of the engine

according to driving conditions. Similarly, the concept of

embedded systems includes medical devices, industrial

robot controllers, smart home systems, and IoT devices.

Unlike general-purpose computers, embedded system

hardware is designed to perform a specific task as

efficiently as possible. The application software and

operating system (mostly Real-Time Operation System:

RTOS) are generally in close communication with the

hardware. The need for instant decision-making and

processing is at the forefront, especially in critical systems

(such as automotive, defence, and medical). They often

require optimized algorithms and efficient software

hardware integration due to limited resources such as

memory, processing power, and battery life [15].

2.2. Real-Time Data Processing Requirements

Real-time processing refers to processing the input data

within a certain time limit and the appropriate response

given by the system. This time limit varies depending on

the application, but in some cases, it can be at the level of

microseconds. Real-time systems are divided into hard

Saday et al., Intelligent Methods in Engineering Sciences 3(4): 108-117, 2024

- 110 -

real-time and soft real-time systems. In hard-time systems,

the time constraint is never exceeded. An example of this

system is the inflation mechanism of an airbag. In soft-

time systems, it is acceptable to exceed the time constraint

rarely, but this causes a performance decrease. An example

is the occasional skipping of a few frames in a live video

broadcast application [2].

The need for real-time processing in embedded systems

means tightly scheduling the data collection and decision-

making cycle. In high-volume or high-frequency data

streams, direct raw data processing can overload the

processor and cause delays. For this reason, data reduction

techniques come into play and pre-filter unnecessary or

repetitive information. Thus, the system's time and

resource usage efficiency increases and critical decisions

can be made within the desired time limit [16].

2.3. Data Volume Increase and Limited Resources

The number and variety of sensors are increasing in

industrial applications, robotic systems, autonomous

vehicles, smart grids and even wearable health

technologies. The increasing number of sensors and sensor

resolutions cause the data volume to grow exponentially

[5]. Processing, storing or transmitting this data over the

network at the same speed seriously challenges embedded

systems with hardware and software constraints.

Memory Constraints: Many embedded platforms have

limited RAM capacities ranging from just a few hundred

kilobytes to a few megabytes. In cases where large datasets

are processed, problems such as memory overflow and

memory insufficiency occur.

Processing Power Constraints: Embedded processors or

microcontrollers have much lower clock speeds and core

counts than high-performance CPU/GPU units; therefore,

they may not have enough computational power for

complex data processing algorithms.

Energy Consumption: Continuous data processing leads

to high energy consumption in mobile or battery-powered

embedded devices. This not only reduces battery life but

also introduces additional challenges, such as device

heating issues [6].

These constraints indicate that lightweight, optimized,

and as real-time as possible data reduction methods are

needed for embedded systems to handle high volumes of

data effectively.

2.4. Impact of Data Reduction on Real-Time
Performance

Data reduction aims to reduce the memory and

processing load by reducing the size of the relevant data.

For example, it is possible to shorten the real-time

inference time by reducing the continuously flowing

sensor data size to provide input to a neural network.

Similarly, reducing high-dimensional image data with

lossy compression techniques (e.g. JPEG, H.264) can

reduce the delays in video streams inside or outside the

embedded system [7, 14].

The selection of data reduction methods often considers

the balance between the real-time processing constraint

and the accuracy or precision requirements of the system.

While a small data loss is acceptable in some applications,

data integrity may need to be preserved in critical

applications. This balance determines the method to be

selected and the operating parameters of the method.

In summary, resource and time constraints shape the

need for real-time data processing in embedded systems. It

constitutes a challenging problem area due to the

constantly expanding data volume. The next section

discusses various data reduction techniques that can solve

these problems.

3. Data Reduction Algorithms

Data reduction is the general name for various methods

and algorithms applied to make large or high-volume

datasets more manageable. In embedded systems, it is

critical to implement a data reduction strategy that is both

time-efficient and energy-efficient, considering memory

and processor constraints. Although there are various

classifications in the literature, five basic approaches that

are frequently mentioned are examined in this study [17,

18]: Dimensionality Reduction, Numerosity Reduction,

Data Compression, Data Cube Aggregation, and

Discretization.

The area of use of each method varies according to the

balance of advantages and disadvantages and application

needs. The basic principles of these techniques and sample

usage scenarios in embedded systems are summarized

below.

3.1. Dimensionality Reduction

Dimensionality reduction methods aim to express the

data in a lower dimensional space by eliminating

unnecessary or repetitive features in high dimensional

datasets. Thus, significant savings are achieved in terms of

computation and storage. Principal Component Analysis

(PCA), Linear Discriminant Analysis (LDA) and

Autoencoder Based Reduction are the main methods [17].

The PCA method finds the directions of variability in the

data and limits the number of dimensions to these

components. In the LDA method, transformations that

increase class separation are applied, especially in

classification problems. The autoencoder-based reduction

method offers an approach to re-encoding data in a low

dimension using autoencoder networks used in deep

learning [19].

3.2. Numerosity Reduction

Numerosity reduction reduces the data volume by

eliminating repetitive, similar or unnecessary data points

in the dataset, especially in environments with frequent

samples, such as sensor data [10]. In this technique, the

Saday et al., Intelligent Methods in Engineering Sciences 3(4): 108-117, 2024

- 111 -

size of the raw data is reduced by taking data at fixed or

adaptive intervals with sampling. By dividing the signal

into specific windows using the segmentation method, an

average value representing each window is expressed.

With the clustering-based method, data points are grouped

according to their similarities, and each group is expressed

by a single center or representative [20]. It is relatively

simple to implement and has low computational cost; it

can significantly reduce energy consumption in embedded

systems. However, if the sampling rate is not adjusted

correctly, it can lead to the loss of critical information.

3.3. Data Compression

Data compression is the process of transforming data in

a way that requires less storage space. It is divided into

two: lossy and lossless [11]. Methods such as Huffman,

Deflate (gzip, zlib), LZ77 and LZMA are frequently used

in lossless compression. In lossy compression, media-

oriented formats such as JPEG, MP3, and H.264/265 have

been integrated into systems in almost every field [21]. In

autonomous vehicles or security cameras, lossy

compression is used to compress and transmit images

instantly. In signals such as blood pressure and ECG,

where the data is more sensitive, lossless compression is

preferred to protect data integrity. Data compression

significantly reduces data size, optimizing transmission

time and storage requirements. However, data quality may

decrease in lossy compression, and the compression ratio

may be limited in lossless methods, which may increase

processing costs.

3.4. Data Cube Aggregation

A data cube is a data structure that performs aggregation

(sum, average, max, etc.) operations on information in

multidimensional data warehouses more quickly. This

method is implemented in embedded systems by recording

only summary statistics instead of keeping all the data. In

this method, data collected by many sensors from different

times and places in an example IoT system are collected

and stored according to certain dimensions (e.g. time,

geographic location, device type). In another application

example, energy consumption data from different regions

for smart grids can be aggregated according to time

periods, and real-time estimates can be made [12]. While

this method reduces memory and processing load by

summarizing large datasets at a statistical level, the

process of creating and updating a multidimensional cube

can be complex. In addition, since summary data is kept

instead of detailed data, there is a possibility of missing

micro-level anomalies.

3.5. Discretization

Discretization aims to reduce the data volume by

expressing continuous data points in certain categories or

intervals. In this method, if sensor data is measured with

0.01 precision, it is possible to reduce the data size and

complexity by dividing it into groups with 0.1-step

intervals. In discretization, equal-width binning, equal-

depth binning and histogram-based methods are frequently

used. The equal-range divides the data into equal-width

sub-intervals and rounds each point to the relevant

interval. The equal-depth performs discretization so that

the number of data samples in each sub-interval is equal.

In histogram-based methods, histograms that

approximately represent the data distribution are created

using a certain number of bins [13]. In embedded systems,

it reduces the data volume by not performing additional

processing or recording unless the signal approaches a

critical value. In machine learning, it is used to simplify

the model by dividing continuous-valued features into

certain categories before entering the classification or

regression model. This method is simple and fast; the

dataset is more understandable and less complex.

However, making the wrong choice in selecting sub-

ranges may result in losing important information or

distortion of the data distribution.

3.6. Comparison of Methods

Table 1 summarizes the typical advantages and

disadvantages of the data reduction techniques examined

in the study. It also points out the basic factors to be

considered in embedded systems.

Each embedded application has its own requirements

for accuracy, energy, memory, and real-time. Therefore,

the data reduction technique to be chosen is often

determined on an application-specific basis. In some cases,

a hybrid use of multiple methods (combining numerosity

reduction and compression) may provide the most optimal

solution.

Saday et al., Intelligent Methods in Engineering Sciences 3(4): 108-117, 2024

- 112 -

Table 1. Comparison of Data Reduction Methods

Method Advantage Disadvantage

Typical

Application

s

Dimensionalit

y Reduction

Significant

reduction in

number of

dimensions

Processing load

may increase

due to complex

matrix

operations

Image/sign

al

processing,

machine

learning

Numerosity

Reduction

Easy

implementation

, low

computational

cost

Incorrect

sampling

settings may

destroy critical

information

IoT sensor

networks,

wearables

Data

Compression

Significant

reduction in

data volume

(lossy

compression)

Limited rate in

lossless

methods,

information

loss in lossy

methods

Medical

data,

video/imag

e streaming

Data Cube

Aggregation

Fast

summarization

of

multidimension

al data

Loss of detail,

multidimension

al cube creation

may be

complicated

Industrial

IoT, data

warehouses

Discretization
Simple, fast,

categorization

Poor range

selection may

distort data

distribution

Sensor

triggering,

machine

learning

pre-

processing

4. Experimental Study

In this study, the performance of the proposed data

reduction algorithms for real-time data processing in

embedded systems is investigated using load and angle

data recorded every five seconds for three months. The

experimental study investigated Dimensionality

Reduction, Numerosity Reduction, Data Compression,

Data Cube Aggregation and Discretization techniques on

the dataset, respectively. The implementation details,

results and visualization of the results of each technique

are presented. Various metrics such as data size reduction

rate, information loss, computation time and compression

accuracy are used to measure the effectiveness of these

algorithms.

4.1. Dataset

The dataset used in the experimental study includes

measurements taken from load and angle sensors

integrated into embedded systems for three months. These

data were collected in real-time to evaluate the

environmental condition and performance of the system.

The measurements were recorded from both sensors at 5-

second intervals, and 1,555,200 data points were obtained

for each sensor. The structure of the dataset can be

summarized as follows:

Load Sensor: Used to measure the load values applied

to the system in kilograms.

Angle Sensor: Used to measure the inclination or

orientation angles of the system in degrees.

Measurement interval: 5 seconds.

Collection Period: 3 months (approximately 90 days).

Data: It has a very high data density in raw data format.

Separate time series were created for each sensor. A

sample section taken from the dataset is given in Table 2.

Table 2. Section of Dataset

Timestamp Data1 (X) Data2 (Y)
Data3

(Load)

2024.11.15 16:47:03 0 0 0

2024.11.15 16:47:08 0 0 0

2024.11.15 16:47:13 -1 1 0

2024.11.15 16:47:18 0 0 95

2024.11.15 16:47:23 -1 0 0

2024.11.15 16:47:28 -1 0 71

2024.11.15 16:47:33 -1 0 82

2024.11.15 16:47:38 -1 0 77

2024.11.15 16:47:43 -1 0 75

2024.11.15 16:47:48 -1 0 74

2024.11.15 16:47:53 -1 0 74

2024.11.15 16:47:58 -1 0 73

2024.11.15 16:48:03 -1 0 73

2024.11.15 16:48:08 -1 0 74

2024.11.15 16:48:14 -1 0 73

2024.11.15 16:48:44 -1 0 72

2024.11.15 16:48:49 -1 0 72

2024.11.15 16:48:54 -1 0 72

2024.11.15 16:48:59 -1 0 72

2024.11.15 16:49:04 -1 0 71

The experimental study was carried out in a time

interval randomly sampled from the dataset in order to

better understand the data reduction methods and to

interpret them on readable data. The change of the X-Y

angle over time in the used sub-dataset is shown in Figure

1 and the change of the load values of the same sub-dataset

over time is given in Figure 2.

Figure 1. Change of X-Y angle over time

Figure 2. Change of load values over time

This dataset is a typical example of real-time data

processing systems. It provides an ideal framework for

evaluating the performance of data reduction algorithms.

Saday et al., Intelligent Methods in Engineering Sciences 3(4): 108-117, 2024

- 113 -

When applying data reduction methods, preserving trends

and patterns in the data of both sensors is critical to

determine the success of the algorithms. Furthermore, the

high dataset volume provides a suitable level of difficulty

in measuring the effectiveness of data compression and

processing techniques.

4.2. Implementation of Algorithms

Principal Component Analysis, PCA method was used

for the dimensionality reduction process. The relationship

between two variables (data1, data2) and load data (data3)

in angle data was examined, and two main components

representing most of the variance were obtained. This

technique is aimed at expressing high-dimensional data

with fewer components. PCA creates new components

with linear combinations derived from original features

(X, Y, Load).

Principal Component 1 (PC1): The first component is

the linear combination that captures the most variance in

the data.

Principal Component 2 (PC2): The second component

captures the most remaining variance, perpendicular to the

first component.

Mathematically, the coefficients of the components are

optimized in the learning process of PCA. The

segmentation chart after PCA is applied to the dataset is

given in Figure 3.

Figure 3. Segmentation of X, Y and Load values

Figure 3 visualizes the extent to which the components

generated by PCA explain the total variance in the data.

The bars show the proportion of variance that each

component can explain on its own, while the cumulative

variance line summarizes how much information the

components contain. The first component (PC1) represents

the most dominant pattern in the data, explaining 66.58%

of the variance. The second component (PC2) explains an

additional 20.35% of the variance, making it possible to

represent 87% of the total variance with only two

components. The slope of the graph clearly shows the

decrease in information added as the number of

components increases. This indicates that the marginal

benefit of adding more components is limited and suggests

that using only the first two components in the analysis is

sufficient. The PCA plot is given in Figure 4 to examine

how these two components represent the data and the

relationships between the data. Figure 4 shows the

reduction of the original three-dimensional dataset (X

angle, Y angle, and load) into two principal components

(PC1 and PC2). Each data point is represented in this new

two-dimensional space. PC1 explains the largest variance

in the data (approximately 66.58%), while PC2 explains

the second largest variance (20.35%).

Figure 4. Presenting of PCA components against each other

The distribution of points in the graph represents how

the relationships between the original variables are

reflected in the two components. The areas where the data

points are concentrated reflect how the data is grouped into

a particular combination of features, while the width of the

spread represents the diversity of the data. This graph

shows that dimensionality reduction has been successfully

achieved while preserving the underlying structure in the

data. These results show that the dataset is largely

concentrated in a single dimension, and therefore,

dimensionality reduction is possible, which will

significantly reduce the computational load.

The k-Means clustering algorithm was applied for

numerosity reduction. Load and angle data were

summarized by dividing them into 3 clusters. This

technique allowed the data to be represented by

categorizing them without losing their original values.

Clusters were determined and classified according to the

similarities of each data point. Cluster 0 is the largest of

the clusters and is mainly associated with low Load values.

Cluster 1 is a medium-sized cluster representing higher

Load values. Cluster 2 is the smallest cluster and

represents more extreme values in Load and other features.

The features of each cluster were analyzed according to

their post-clustering means:

Cluster 0: X ≈ 0.01, Y ≈ 0.00, Load ≈ 15.58

Cluster 1: X ≈ -0.75, Y ≈ 0.98, Load ≈ 240.35

Cluster 2: X ≈ -1.03, Y ≈ 0.00, Load ≈ 109.64

These results show that the clustering algorithm

separates the data significantly.

Saday et al., Intelligent Methods in Engineering Sciences 3(4): 108-117, 2024

- 114 -

Figure 5 visualizes the results of the K-Means clustering

algorithm on data reduced to two dimensions using PCA.

Principal Component 1 and Principal Component 2 form

the axes in the graph as the two main components

explaining 66.58% and 20.35% of the total variance of the

data, respectively. The graph shows how the data points

are grouped in the new space by distinguishing three

clusters with different colors. The distances between the

clusters reveal how the features (X, Y and Load) are

related to each other and how the K-Means algorithm

separates the data using these relationships. This

visualization allows an understanding of the clear

separation between the clusters even when the data is

represented in two dimensions with PCA. This analysis

allows data processing with fewer representatives,

especially for devices with limited processing capacity in

embedded systems.

Figure 5. K-Means clustering on reduced data

For Data Compression, the Zlib compression algorithm

is investigated. Data compression is a critical technique for

optimizing bandwidth and storage requirements in

embedded systems. In this study, the Zlib compression

algorithm is used to reduce the size of the dataset. Zlib is a

widely used algorithm that provides lossless compression

to obtain a smaller data representation. Within the scope of

the analysis, X, Y, and Load features in the dataset are

subjected to compression. The findings obtained as a result

of the application of the Zlib algorithm are as follows:

Original data size: 4563 bytes

Compressed data size: 486 bytes

Compression ratio: 10.65%

Figure 6. Original data size and the compressed data size

comparison

These results show that the Zlib algorithm provides

significant data set compression and saves 89.35% of the

storage space without data loss. Compressed data not only

reduces storage requirements but also provides advantages

during data transfer. The data compression results

performed by the Zlib algorithm are visualized in Figure 6

and Figure 7. Figure 6 compares the original data size and

the compressed data size. This graph concretely

demonstrates the effect of compression and shows that the

Zlib algorithm provides a significant reduction in data size.

Figure 7 presents a pie chart expressing the compression

ratio as a percentage. This graph shows that approximately

89.35% of the data is compressed, while only 10.65%

remains as compressed data. These results show how

effective Zlib is in data storage and transfer. The graphs

emphasize that compression ratios can not only reduce

data size but also improve performance in data processing

processes in embedded systems.

Figure 7. Compression ratio of data sizes

The mean/median algorithm was used for Data Cube

Aggregation. The data cube aggregation process was

applied to summarize the data in certain time periods. In

Saday et al., Intelligent Methods in Engineering Sciences 3(4): 108-117, 2024

- 115 -

this study, the data set was resampled at 1-minute

intervals, and the mean and median values were calculated

for each time period. The mean represents the general

trend of the data and is obtained by dividing the sum of all

data points by the amount of data. This value is used to

understand the general level of the variables in the data set.

The median represents the median value of the data and is

more resistant to extreme values. This is especially useful

in cases with extreme values in the data set. The results

obtained from the application are given in Table 3.

Table 3. Mean and Median Application Results

Feature Mean Median

X 0.01 0.0

Y 0.00 0.0

Load 55.77 10.0

According to Table 3, the mean and median values for

X and Y are quite low and close to each other. This

indicates that the data is symmetrically distributed.

However, in critical applications, this method may cause

errors by resetting the direction of the orientation. The

Load feature has a higher mean, and the median is quite

lower than the mean, indicating that the data is skewed.

This technique helps save energy in embedded systems by

facilitating the analysis and storage of the data set.

The binning algorithm was used for discretization.

Discretization was applied to transform continuous data

into discrete categories. Discretization divides continuous

data into categories by dividing them into specific intervals

and facilitates data analysis and modelling processes. In

this context, the binning method was used on the X, Y, and

Load features in the data set. The data was divided into 5

categories (bins) with equal width for each feature. Each

bin was defined with a specific interval, and the data was

assigned to categories according to these intervals. The

discretization process is given in Figure 8.

Figure 8. Discretization process chart

In Figure 8, the distributions of Load, X, and Y features

divided into certain categories by the binning method are

shown as bars. Each color represents a feature, and the

height of the bars indicates how many times this feature

has been in a certain bin (category). Blue bars show the

distribution of load values and indicate that the load is

concentrated in certain intervals. Higher frequencies are

observed, especially in subcategories (e.g. low load

values). Orange bars represent the distribution of the X

feature in different intervals (bins). The distribution is

generally concentrated in low intervals. Green bars

represent the distribution of the Y feature among bins, and,

similar to other features, they exhibit a more concentrated

distribution with low values. The categorical label of the

relevant bin represents each data point. Since angle values

are coordinate values, they have small intervals and are

generally concentrated in low values. A wider distribution

is observed in load values, which are grouped in certain

intervals. The categorical representation of continuous

variables with the binning algorithm facilitates data

processing, especially in algorithms such as decision trees.

In this way, the effect of extreme values is reduced, and

the data set is given a more balanced structure. This

technique offers an effective solution for making

continuous data easily analyzable.

5. Results

In this study, the effectiveness of data reduction

techniques in real-time data processing in embedded

systems has been investigated comprehensively. The

dataset consists of load and angle (X, Y) values recorded

every five seconds for three months and was used to

evaluate the performance of data reduction methods.

During the study, Principal Component Analysis (PCA),

K-Means, Data Compression with Zlib, Data Cube

Aggregation, and Discretization (Binning) techniques

were analyzed, and their results were evaluated. The

results revealed the strengths and weaknesses of each

algorithm, and recommendations were developed for

application scenarios.

5.1. Performance of Data Reduction Techniques

Principal Component Analysis (PCA): PCA reduced the

original three-dimensional data into two principal

components and explained approximately 87% of the total

variance. This shows that dimensionality reduction was

successfully achieved by preserving the basic structures of

the load and angle data. According to the obtained result,

PCA offers an effective solution in cases where the data

size is limited and preserving the basic variables is

important. However, its performance may decrease in

cases where the variance is low.

K-Means Clustering: The K-Means algorithm applied to

the data set reduced with PCA divided the data set into

three clusters and revealed significant separations between

the load, X, and Y features. The K-Means algorithm

applied directly without PCA was especially supported by

three-dimensional graphics, and the general distribution of

the clusters was analyzed. K-Means was evaluated as an

effective method for identifying natural groups in the data

set. This technique is a powerful tool for summarizing and

analyzing large data sets. According to the study, K-Means

Saday et al., Intelligent Methods in Engineering Sciences 3(4): 108-117, 2024

- 116 -

is suitable for summarizing large data sets. However,

determining the appropriate number of clusters and

accuracy issues may occur in non-homogeneous data sets.

Data Compression with Zlib: The Zlib algorithm has

managed to compress the data size by 35% with the

lossless compression method. This lossless compression

method has provided a highly effective solution in data

sizing and has been shown to provide advantages in data

storage and transfer processes in embedded systems. This

technique has provided significant storage and data

transfer advantages by providing compression without

data loss. The success of Zlib shows that the data set can

have repetitive patterns and low information density. This

is especially critical in real-time data processing

applications in embedded systems because compressed

data can be processed and transferred more quickly. As a

result, the Zlib algorithm can be evaluated as an effective

and lossless method for data reduction. According to the

study results, lossless compression methods can be used

where data loss cannot be tolerated. However, lossy

compression methods can be evaluated in scenarios that

require higher compression ratios.

Data Cube Aggregation (Mean and Median): With this

method, the data set is summarized, and the mean and

median values for each feature are calculated. In particular,

the median provided a more balanced data summary by

reducing the effect of extreme values. This method, which

speeds up the data processing process by reducing data

density, has been evaluated as an effective solution for fast

decision mechanisms in embedded systems. The mean and

median values effectively represented data trends and

facilitated the data analysis process. According to the

results obtained, it is seen that this method is suitable for

use in cases where there is no need for real-time processing

or where it is sufficient to analyze past data by

summarizing it.

Discretization (Binning): The binning method was

applied to convert continuous data into categorical

intervals, and X, Y, and load features were represented in

5 different bins (categories). This approach provided a

powerful tool for understanding the distribution of features

in different intervals and was supported by visualization.

Binning provided suitable data preparation, especially for

decision trees and similar algorithms. The discretization

method converted the load data into discrete categories and

showed that 70% of the data was collected at low levels. It

is seen that the discretization process is suitable for cases

where continuous data needs to be processed in categorical

formats. However, the selection of threshold values can

directly affect the accuracy of the results.

5.2. Comparison of Algorithms

Experimental studies have shown that each data

reduction algorithm offers certain advantages for

optimizing data processing performance in embedded

systems. Each technique offers different advantages:

PCA is a powerful tool for dimensionality reduction in

highly correlated data sets. In this technique, the

processing load is reduced while the basic features of the

data are preserved.

K-Means is a suitable method for representing data with

categorical groups. In this technique, similar to PCA, the

processing load is reduced while the basic features of the

data are preserved.

Zlib compression is ideal for reducing data transfer

costs and optimizing storage requirements. Zlib provided

bandwidth savings and storage optimization.

Aggregation facilitates historical data analysis and data

storage processes. In the study, an effective summarization

method was presented to understand data trends.

Discretization can be used in the classification and

decision-making processes of continuous data. It

facilitated the representation of continuous data at discrete

levels.

This study has revealed the role of data reduction

techniques in real-time data processing applications in

embedded systems. The obtained findings clearly show the

advantages of data reduction techniques in terms of size,

speed and ease of data processing. It has been revealed

how the combination of PCA and K-Means is effective in

the process of size reduction and grouping by preserving

the relationships in the data set. The potential benefits of

the Zlib compression in data storage and transfer processes

are emphasized. The effects of Data Cube Aggregation and

Binning methods in summarizing the data set and

categorical transformation processes are explained.

The results of this study provide important information

on which algorithms to use to use the limited resources of

embedded systems in the most efficient way. These results

can provide guidance for deciding which algorithms to use

in data processing processes in embedded systems. Each

technique can be preferred according to the application

scenario and system requirements.

6. Conclusion

This study evaluated the applicability of different data

reduction algorithms to optimize real-time data processing

processes in embedded systems. Five different algorithms

(Dimensionality Reduction, Numerosity Reduction, Data

Compression, Data Cube Aggregation and Discretization)

were comprehensively analyzed using load and angle data

recorded every five seconds for a month. The findings of

the study revealed that each algorithm offers distinct

advantages to efficiently utilize the limited resources of

embedded systems.

The Dimensionality Reduction (PCA) method

significantly reduced the processing load in data sets with

high correlation. It could express a large portion of the total

variance with a small number of principal components.

Saday et al., Intelligent Methods in Engineering Sciences 3(4): 108-117, 2024

- 117 -

The Numerosity Reduction (K-Means) algorithm allowed

the data to be represented with categorical groups and

summarized large data sets more understandably. The Data

Compression (Zlib) method reduced the storage and

communication costs by reducing the data size without

loss. Data Cube Aggregation summarized the data

according to time periods and facilitated the analysis

processes. Discretization (Binning) contributed to the

decision-making processes by converting continuous data

to categorical levels.

The results of this study provide guiding information in

determining data processing and management strategies in

embedded systems. The study reveals the strengths and

weaknesses of each algorithm and provides system

designers with the opportunity to choose the correct

algorithm according to the application requirements. In the

future, the development of hybrid models by combining

these algorithms can increase data processing performance

and the effectiveness of embedded systems in a broader

range of applications.

As a result, this study highlights the potential of data

reduction techniques in embedded systems, providing a

practical framework to meet real-time processing

requirements with limited resources. The demonstrated

methods have a wide range of applications for embedded

systems, big data analytics, and machine learning

applications.

The algorithms used in this study were evaluated

individually, and their performances in embedded systems

were compared. In the future, it is thought that these

algorithms can be combined with hybrid approaches to

provide more flexible and powerful data processing

solutions. For example, combining PCA and K-Means can

perform dimensionality reduction and clustering

operations. Similarly, both data dimensionality can be

reduced, and analysis processes can be facilitated by

combining compression methods with discretization

techniques.

However, it is recommended that comparative analyses

be conducted with different data types and more complex

algorithms. In addition, comparing compression

algorithms with lossy methods and examining different

clustering algorithms offers a research area for future

studies.

Acknowledgments

This research has received no external funding.

References

[1] M. Jiménez, R. Palomera, and I. Couvertier, Introduction to

embedded systems. Springer, 2013.

[2] H. Kopetz and W. Steiner, Real-time systems: design principles
for distributed embedded applications. Springer Nature, 2022.

[3] P. Marwedel, Embedded system design: embedded systems

foundations of cyber-physical systems, and the internet of

things. Springer Nature, 2021.

[4] P. Louridas and C. Ebert, "Embedded analytics and statistics

for big data," IEEE software, vol. 30, no. 6, pp. 33-39, 2013.

[5] M. Wu, "Wearable technology applications in healthcare: a

literature review," On-Line Journal of Nursing Informatics, vol.
23, no. 3, 2019.

[6] M. A. Wulder et al., "Lidar sampling for large-area forest

characterization: A review," Remote sensing of environment,

vol. 121, pp. 196-209, 2012.

[7] P. R. Evans, "An introduction to data reduction: space-group

determination, scaling and intensity statistics," Acta

Crystallographica Section D: Biological Crystallography, vol.

67, no. 4, pp. 282-292, 2011.
[8] P. M. Gleason, C. J. Boushey, J. E. Harris, and J. Zoellner,

"Publishing nutrition research: a review of multivariate

techniques—part 3: data reduction methods," Journal of the

Academy of Nutrition and Dietetics, vol. 115, no. 7, pp. 1072-

1082, 2015.

[9] J. P. Cunningham and B. M. Yu, "Dimensionality reduction for

large-scale neural recordings," Nature neuroscience, vol. 17, no.

11, pp. 1500-1509, 2014.
[10] K. Kalegele, H. Takahashi, J. Sveholm, K. Sasai, G. Kitagata,

and T. Kinoshita, "On-demand data numerosity reduction for

learning artifacts," in 2012 IEEE 26th International Conference

on Advanced Information Networking and Applications, 2012:

IEEE, pp. 152-159.

[11] K. Sayood, Introduction to data compression. Morgan

Kaufmann, 2017.
[12] D. P. S. Ghazali, R. Latip, M. Hussin, and M. H. Abd Wahab,

"A review data cube analysis method in big data environment,"

ARPN J. Eng. Appl. Sci, vol. 10, pp. 8525-8532, 2015.

[13] S. Ramírez‐Gallego et al., "Data discretization: taxonomy and

big data challenge," Wiley Interdisciplinary Reviews: Data

Mining and Knowledge Discovery, vol. 6, no. 1, pp. 5-21, 2016.

[14] A. Papageorgiou, B. Cheng, and E. Kovacs, "Real-time data

reduction at the network edge of Internet-of-Things systems,"
in 2015 11th international conference on network and service

management (CNSM), 2015: IEEE, pp. 284-291.

[15] E. A. Lee and S. A. Seshia, Introduction to embedded systems:

A cyber-physical systems approach. MIT press, 2017.

[16] D. Hatley and I. Pirbhai, Strategies for real-time system

specification. Addison-Wesley, 2013.

[17] N. Salem and S. Hussein, "Data dimensional reduction and

principal components analysis," Procedia Computer Science,
vol. 163, pp. 292-299, 2019.

[18] D. Quick and K.-K. R. Choo, "Big forensic data reduction:

digital forensic images and electronic evidence," Cluster

Computing, vol. 19, pp. 723-740, 2016.

[19] Y. Wang, H. Yao, and S. Zhao, "Auto-encoder based

dimensionality reduction," Neurocomputing, vol. 184, pp. 232-

242, 2016.

[20] A. Rossi, A. Visentin, S. Prestwich, and K. N. Brown,
"Clustering-Based Numerosity Reduction for Cloud Workload

Forecasting," in International Symposium on Algorithmic

Aspects of Cloud Computing, 2023: Springer, pp. 115-132.

[21] D. Salomon and G. Motta, Handbook of data compression.

Springer Science & Business Media, 2010.

