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 The identification of pavement cracks is essential for reducing traffic accidents and minimizing 

road maintenance costs. Existing crack detection methods frequently encounter challenges related 

to inefficiencies and accuracy, resulting in billions of dollars spent globally on road repairs 

annually. This study introduces an enhanced deep learning-based network aims at improving the 

accuracy of pavement crack detection. The proposed CrackNet utilizes advanced geometric 

augmentation techniques to enhance the model performance in identifying cracks across a variety 

of road conditions. We introduced CrackNet, a custom-designed deep-learning classification 

framework for pavement images. CrackNet combines pre-trained backbone feature extractors 

(MobileNetV2, InceptionV4, SqueezeNet) with a lightweight classifier head and a comprehensive 

preprocessing + augmentation pipeline to improve generalizability and address class imbalance. 

We evaluated three CrackNet variants (Sqz-CrackNet, Mob-CrackNet, Incep-CrackNet), each 

distinguished by its backbone, and found Incep-CrackNet achieved the highest accuracy of 

96.05%, surpassing the Mob-crackNet and Sqz-crackNet, which attained accuracies of 95.44% 

and 90.06%, respectively. These findings underscore the effectiveness of the proposed deep 

learning framework in accurately detecting pavement cracks, representing a significant 

advancement over traditional detection methods. 
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1. INTRODUCTION 

Generally, the modes of transportation are road, rail, 

water, and air. The transport system of Pakistan is 

primarily dependent on road transport, which makes up 

90% of national passenger traffic and around 96 % of freight 

movement. Over the past several years, road traffic has grown 

day by day which resulting in severe road accidents and 

impacting the efficiency of the road. Pakistan is gifted with 

a naturally geo-strategic location. As it is at the crossroads 

of Asia with China, this makes it an attractive and shortest 

route for transportation to the Central Asian Republic. 

Road transportation is the backbone of the economy of 

Pakistan because imports and exports are done by road. 

And other countries also use the roads of Pakistan for their 

transport of goods. Friction between the road and vehicle, 

extreme weather conditions, and material aging impact the 

efficiency of roads. This is manifested in the form of cracks 

on the road. A crack is a condition of the road that occurs 

when concrete is completely or incompletely separated into 

two parts. The major causes of cracks on roads are water 

accumulation, oil spills, drying shrinkage, stripping, and 

fatigue cracks [1]. 

The key component influencing road effectiveness is 

pavement deterioration. The identification of pavement 

deterioration in a timely and efficient manner is a critical 

element in pavement care. Cracks are the first sign of 

several forms of pavement issues. Pavement cracks not 

only degrade pavement look and driving convenience, but 

they may also readily spread and create extensive 

destruction to the pavement, reducing ultimate operational 

productivity and durability [2,3]. As a result, early crack 

identification and early management of cracked pavement 

can lower the economic cost of pavement restoration while 

also ensuring the safety of cars and drivers using the 

roadway. That’s why it is crucial to measure pavement 

crack type detection and develop repair and maintenance 

strategies to improve the usability of roads and public 

safety. Detecting road cracks in Pakistan roads helps 

vehicles move smoothly without getting stuck in these 

cracks. Assessing the quality of road surfaces by detecting 

road cracks is beneficial to reduce maintenance costs. It is 

vital to keep roads in good condition for driving safety 

assurance. And it is mandatory to identify cracks timely 
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manner for their repair. In the past, a lot of work is done 

by researchers in pavement crack detection by using a deep 

learning approach, but still, there is a need for improvement. 

In the current study, we have implemented a model on raw 

images taken from {4]. We normalized these raw images 

and trained 80% dataset on three deep learning models, 

MobileNet V2, Inception V4, and SqueezeNet, and 

achieved higher accuracy than found in the literature. 

2. LITERATURE REVIEW 

DL-based solutions have been successfully applied in 

multiple domains, including disease detection in humans 

[5–11], plant disease identification [12], [13], and various 

multidisciplinary applications such as UAV-based object 

detection, wearable sensing, and intelligent systems [14–

18]. Similarly, DL techniques are also being used for the 

early crack detection and classification. In [3], Otsu’s 

thresholding technique is used for programmed break 

identification and arrangement framework for substantial 

surface pictures, and their fogginess is taken out by utilizing 

a Wiener channel. Wavelet change and Singular Value 

Decomposition (SVD) are utilized for the removal of non-

uniform light in pictures. An arbitrary backwood 

calculation is chosen to characterize the pictures into 

explicit sorts i.e., minor, moderate, serious, and complex 

breaks. In [2], the authors proposed a mechanized road 

crack recognition framework dependent on YOLO v2. The 

dataset comprised 9,053 pictures with a vehicle-mounted 

cell phone. These pictures were partitioned into classes 

named wheel mark part, development joint imprint, 

equivalent stretch, development joint imprint, Partial 

asphalt, in general asphalt, Rutting, knock, pothole, 

detachment, crosswalk obscure, and white line obscure. In 

19], investigators addressed a profound learning-based 

strategy for road break recognition by using ConvNet. A 

Dataset of 500 pictures is gathered at the Temple University 

grounds by utilizing a cell phone. The model achieved 

0.8696 accuracy and 0.8965 F1 scores. In [20], the authors 

present an incorporated AI model for programmed bridge 

crack recognition and grouping in metropolitan regions is 

done by using division, noise reduction, highlight 

extraction, and break arrangement. The dataset was 

gathered from various breaks in Tehran metropolitan 

region. The proposed crossbreed model is a blend of 

decision trees and SVM, which achieved 93.86% 

accuracy. In [21], the authors classified different street 

asphalt surface breaks. This input image was of 

1536×2048 pixels, obtained by an optical gadget. In [22], 

researchers addressed a strategy for recognizing pixel-level 

street breaks. The dataset was gathered by discovery 

cameras. The proposed convolutional encoder-decoder 

network utilized ResNet-152, and the deconvolution 

strategies of SegNet, FCN, and ZDNet. The outcomes 

show that the proposed technique is ideal for detecting 

breaks in discovery pictures at the pixel level. In [1], a 

computerized and smart system is used for break location. 

The dataset is first preprocessed and then features are 

extracted using convolutional neural networks on 

MATLAB with a precision rate of 90%. In [23], the 

authors presented a novel mechanized break recognition 

system using the STRUM (spatially tuned strong 

multifeatured) classifier. By utilizing AI (Artificial 

Intelligence), the need to tune boundaries mechanically is 

eliminated. Element calculation incorporates the scale-

space of the neighborhood and highlights the size of the 

break. STRUM classifier achieves 69% precision. In [24], 

researchers presented a break recognition strategy with a 

limited quantity of datasets by using contrast and the 

conventional edge location techniques. In [25], experts 

presented a learning model based on the YOLOv4 to find 

connecting breaks by an automated flying vehicle, UAV 

(unmanned aerial vehicle). [26] provided an extensive 

overview of advancements in asphalt pavement 

technologies, emphasizing sustainability, smart 

diagnostics, and data-driven practices. Their insights help 

frame the importance of integrating intelligent systems 

such as CrackNet into modern pavement assessment 

workflows. [27] introduced a YOLO-based deep learning 

architecture for detecting and classifying pavement 

distress types. Their success in applying real-time object 

detection supports the viability of lightweight yet accurate 

networks in field-ready applications. [28] developed an 

image processing pipeline based on crack pixel density 

that effectively quantifies and classifies pavement cracks 

with high reliability. Their work demonstrates how 

structural metrics can enhance interpretability and 

accuracy in classification tasks. This strategy has low 

identification productivity and high work cost. The detailed 

comparison of literature is shown in Table 1. 

2.1. Paper contribution 

Pavement Management Systems (PMS) are gaining 

importance in pavement surveying, monitoring, and 

restoration. To enhance pavement management, an 

increasing number of transportation agencies are creating 

and enhancing pavement management systems. Pavement 

crack analysis, which comprises crack identification and 

detection of crack progression, is an important and 

necessary function in PMS. Many transportation 

authorities are now accumulating pavement image data on 

a regular and frequent basis. As a result, this research 

proposed a method for analyzing existing cracks that uses 

previous data as a benchmark. The contributions are listed 

below, 

Comprehensive literature review of existing 

methodologies. Found research gaps and where 

improvements can be made. 

The authors presented a method for utilizing previous 

crack records as a standard for pavement crack evaluation, 
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which may considerably improve pavement crack analysis 

effectively. 

The network makes full use of the semantic information 

of hierarchical convolution features and is very effective 

for crack detection under a complex scene. 

Detailed comparison of results achieved in balanced vs 

imbalanced datasets. 

 

Table 1. Comparison of Previous Studies. 

Research Problem Technique 

Used 

Results 

[3] Review and analysis of 
crack detection and 

classification based on 

crack types 

Image 
processing and 

Machine 

learning 

Break 
recognition and 

characterization 

method for 
common 

foundation are 

effective and 
widely 

used 

[2] Automated road crack 
detection 

DCNN Developed a 
dataset using 

google road 

[19] Road crack detection DCNN Accuracy: 
86.96% 

[20] Automated road crack 
detection and classification 

Integrated 
machine learning 

Accuracy: 
83.86% 

[21] Crack detection and 
characterization 

Image 
processing 

- 

[22] Road crack detection Encoder-

decoder network 

Results shows 

the proposed 

technique is 
ideal for 

detecting breaks 

in pictures at the 

pixel level 

[1] Bridge crack detection CNN Accuracy: 90% 

[23] Automated road crack 

detection 

Machine 

learning and 

Computer vision 

- 

[24] Bridge crack detection Image 

processing 

Accurately 

identify cracks in 

collected images 

[25] Bridge crack detection YOLO-V4-FPM - 

[28] 
 

Pavement crack detection 
and classification 

 

Crack pixel 
density-based 

image 

processing 
 

Effectively 
segments and 

classifies cracks 

using automated 
pipeline 

 

[26] 

 

Advancement in asphalt 

pavement 
 

Review of 

pavement design 
and maintenance 

tools 

 

Highlights 

recent 
innovations, 

emphasizing 

sustainability 
and smart 

diagnostics 

 

 

3. MATERIALS AND METHODS 

Roads are considered important infrastructure for every 

country; therefore, special care is needed to detect these 

cracks before a major loss. Deep learning has proven as the 

most powerful tool for visual recognition and produces the 

highest accuracies as compared to the traditional machine 

learning approach. Figure 1 shows the block diagram of 

our research methodology, where the dataset of the cracks 

in pavement is first normalized, then fed into three deep 

learning models i.e., SqueezeNet, MobileNetV2, and 

InceptionV4, and finally classified by their softmax layer, 

which is a fully connected layer, as cracked and non-

cracked images. 

 

3.1. Dataset Distribution 

Structural defect (SDNET2018) is an annotated dataset 

used for AI-based crack detection training and validation. The 

collection includes 56,000 pictures of cracked and non-

cracked bridges, pavement and wall samples as shown in 

Figure 3, Figure 4, and Figure 5, respectively. This dataset 

comprises fractures ranging in size from 0.06mm to 25mm, 

allowing us to identify the tiniest and deepest apparent 

fissures. SDNET2018 images were shot with a 16-

megapixel Nikon camera at a working distance of 500 mm 

without zoom. The ISO was set to 125, and the image 

resolution was 4068 x 3456 px. The surface lighting varied 

between 1500 and 3000 lx. Figure 3-5 shows the kind of 

images this dataset contains. 

Each image in the dataset is divided into 256x256 pixels 

and covers a corporeal region of around 1000 x 850 mm. 

Cracked and non-cracked categories. The pavement 

images have been acquired from the roads and the 

sidewalks, in which 2608 images contain cracks, while 

21726 images belong to the non-cracked category. Images 

of walls and pavements were shot on the Utah State 

University campus. The dataset has been acquired from 

Kaggle, which is publicly available for researchers [4]. 

3.2. Data Augmentation 

We have augmented cracked images (only) eight times, 

as shown in Table 2 and the augmented samples are shown 

in Figure 6. 

Table 2. Augmented Dataset. 
 

Sr. 

No 

Class Images After Augmentation 

1. Crack 2,608 x 8=20,864 

2. Non-Crack 21,726 

 Total 42,590 

3.3. Preprocessing 

Raw images are preprocessed for each model. The 

following steps are adopted to obtain the required pre-

processed images. 
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Figure 1. Block Diagram of Autonomous Crack Detection. 

 

Figure 2. SDNET2018 Dataset Distribution. 

     
(a) 

     
(b) 

Figure 3. Crackled and non-cracked bridge deck images 

(a) (b) 

Figure 4. Crackled and non-cracked pavement images. 

 

(a) (b) 

Figure 5. Crackled and non-cracked wall images. 

3.3.1. Resize 

The input images were of size 256 x 256, which were 

resized to 299 x 299 for InceptionV4 (shown in Figure 7) 

while 224x224 for MobileNetV2 and SqueezeNet as 

shown in Figure 8. Figure 9 shows the individual cracked 

and non-cracked raw images split into respective red, 

green, and blue channels.  

 

Figure 6. Image Augmentation a) Original image b) 180-degree 
rotated c) 90-degree left rotated d) 90-degree right rotated e) 15-

degree right rotated f) 30- degree right rotated g) 25-degree 
right rotated h) 15-degree left rotated. 
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(a) (b) 

Figure 7. Resized 299x299 image for InceptionV4 (a) Cracked 
(b) Non-cracked. 

(a) (b) 

Figure 8. Resized 224x224 image for MobileNetV2 and 
SqueezeNet (a) Cracked (b) Non-cracked. 

 

 

Figure 9. RGB channels of (a) Cracked and (b) Non-cracked 
images. 

3.3.2. Normalization 

Normalization is done because, during the training 

phase, the model multiplies weights and adds to biases. 

These initial inputs form activations, which we will then 

backpropagate using gradients to train the model. Here, 

each feature must have a comparable range so that 

gradients don't spiral out of control. Inputs with big 

decimal numbers can interrupt or impede the learning 

process in deep learning models, which process inputs 

with modest weight values. As a result, normalizing the 

pixel values so that each pixel value has a value between 0 

and 1 is recommended in practice. The aim of 

normalization also comes from calibrating the diverse 

pixel intensities into a normal distribution, which improves 

the image's appearance for the visualizer [29]. 

Resized images are normalized into a fixed mean of 

[0.485, 0.456, 0.406] and standard deviation of [0.229, 

0.224, 0.225] for RGB images having red, green, and blue 

channels. This means an STD was calculated by using 

ImageNet [30], which contains 14 million images from 

1000 classes, as done. Figure 9 and Figure 10 show 

cracked and non-cracked images before and after 

Normalization. The pixel intensities for cracked images 

before normalization ranged from 45 to 220, and after 

normalization, 0.2-0.8. Non-cracked image in Figure 11 

shows 25-to-170-pixel values, and after normalization it 

shows 0 to 0.6. 

3.4. Dataset Distribution 

The 80% dataset has been randomly separated for 

training purposes, while 20% is reserved for validation, as 

shown in Tables 2 and 3. The original data + trained model 

is called Scheme 1, and the augmented data + trained 

model is called Scheme 2. 

Table 3. Dataset Distribution of Scheme 1. 

Class Images Training Validation 

Crack 2,608 2086 522 

Non- Crack 21,726 17,020 4706 

Total 24,334 19,106 5,228 

 

Table 4. Dataset Distribution of Scheme 2. 

 

 

Figure 10. Cracked image before and after normalization. 

 

Figure 11. Non-cracked image before and after normalization. 

3.5. Transfer Learning 

Transfer learning is a machine learning approach in which 

a model that has been built for a certain task is utilized 

again as the reference basis for a second task model [31] as 

shown in Figure 12. 

In this article, we utilized trained base networks on a 

dataset named as ImageNet [30] such as Mobilenet v2 

[32], Inception v4 [33] and SqueezeNet [34] and a task 

(classification of 1000 classes), and then reassigned or 

transferred the learning characteristics to a second target 

Class Images Training Validation 

Crack 20,864 16,691 4,173 

Non- Crack 21,726 17,020 4,706 

Total 42,590 33,711 8,879 
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network to be trained in a desired dataset- SDNET2018 

[35],[4] and task (crack detection and classification). This 

approach's utilization succeeded in classifying pavement 

cracks because the models were trained on generic 

attributes of 1000 classes, which means that they are suited 

for both the base and the target tasks classification.  

 

Figure 12. Block Diagram of Transfer learning Approach [31]. 

3.6. CrackNet Architecture 

CrackNet is the task-specific classifier head used on top 

of the frozen/pre-trained backbones. The head comprises a 

global average pooling layer followed by a fully connected 

layer and a two-unit softmax output for binary 

classification (cracked vs non-cracked). During transfer 

learning we freeze the backbone (pre-trained on 

ImageNet) and unfreeze the final layers of the backbone 

and the CrackNet head for target-task fine-tuning. The 

same CrackNet head is used across the three variants; Sqz-

CrackNet, Mob-CrackNet and Incep-CrackNet refer only 

to the backbone choice.  

MobileNetV2: The MobileNetV2 deep learning model 

is used as a backbone network in this study. The 

architectural details of MobileNetV2 can be found in [32]. 

InceptionV4: The complete architecture of InceptionV4, 

and its details can be referred from [33]. 

SqueezeNet: SqueezeNet, where each building block is 

known as the fire module, which is one squeezed layer, 

and one expanded layer combined to form a fire block. This 

model has four fire blocks followed by a convolution and 

pooling layer. Detailed architecture layers and blocks can 

be seen for further understanding in [34]. 

3.7. Hyperparameters (HP) Selection and Tuning 

Here, each input images are resized according to the 

model requirement and then normalized into mean and 

standard deviation calculated by using ImageNet [30]. The 

tuning procedure evaluated a compact set of candidate 

values for each hyperparameter and selected values that (i) 

produced stable, monotonic decreases in validation loss, 

and (ii) achieved high validation accuracy without evident 

overfitting. The candidate values and final choices are 

summarized in Table 5. Specifically: 

3.7.1. Batch size (BS) 

The number of training instances forwarded to the 

networks is referred to as the batch size. A training dataset 

can be broken down into one or more batches. The learning 

technique is known as batch gradient descent when all 

training samples are supplied in a single batch. The 

learning technique is known as stochastic gradient descent 

when the BS is one. The learning algorithm is known as 

mini-batch gradient descent when the BS is greater than 

one but less than the training size. The BS’s used in mini-

batch gradient descent are 32, 64, and 128. The larger the 

batch size, the more accurate the network. With a power of 

2, the BS ranges from 1 to 1024 [36]. Increasing the batch 

size reduces model performance by causing it to gravitate to 

sharp minimizers of the training function [37]. The batch 

size is determined by the application; after extensive 

research, here we decided to use BS of 64. 

3.7.2. Learning Rate 

One of the most essential factors used to optimize the 

models is the learning rate. It reduces error by adjusting 

network weights. Choosing a learning rate that is too low 

and an LR that is too high might harm model performance. 

A low LR will result in little updates to the network 

weights, slowing down the training process, whereas a 

large LR will result in divergent behavior in the error. 

Training should begin with a high LR since random 

weights are far from ideal at the outset, and learning rates 

will fine-grained the network weights by reducing their 

value overtraining. The approach provides could begin 

with a large value, such as 0.5, and then    progress to lower 

values such as 0.05, 0.005, and so on. [36] recommended 

using tiny LR for bigger issues [37,38], which is why we 

selected 0.0005 LR here. 

3.7.3. Epochs 

The number of epochs indicates how many times the 

training dataset has been traversed. Every epoch indicates 

that the training sample can modify the model's internal 

parameters. There may be one or more batches. The 

number of epochs might be somewhere between 0 and 

infinity. Hundreds of thousands of epochs are often 
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chosen. This enables the network to effectively reduce 

errors. A designer must study the error and accuracy 

learning curves to identify the optimal epoch value. These 

curves can help in assessing the model's learning states, 

such as over-learned, under-learned, or training-suitable 

[36]. We used a total of 5 epochs after repeated testing, 

which was then divided into 200 epochs for a total of 1000 

epochs. 

3.7.4. Optimization 

The Adam optimizer (AO) is a combination of two 

gradient descent algorithms: the gradient descent 

algorithm (GDA) and Root Mean Square Propagation 

(RMSP). AO builds on the attributes or positive 

characteristics of the prior two systems to produce a more 

optimum gradient descent. In this scenario, the gradient 

descent rate is tuned so that there is little variation when it 

reaches the global minimum while making big steps to 

avoid the local minimum obstacles along the way. As a 

consequence, using the advantages of the prior procedures 

to efficiently achieve the global minimum [39]. The graph 

in Figure12 clearly shows how AO surpasses the other 

optimizers in terms to training cost (minimal) and 

performance by a significant margin (high). 

Table 5. Hyperparameter Search Summary And Final Choices. 

 

Hyperparameter Candidate Values Selected Value 

(Used in Study) 

Batch size {32, 64, 128} 64 

Learning rate        {1e-3, 5e-4, 1e-4, 

5e-5} 

5e-4 

Optimizer {SGD, Adam} Adam 

Max epochs (max) up to 1000 up to 1000 (best 

checkpoint used; 

best epoch ≈ 5) 

 

Table 6. Deep Learning Models Comparison 

Deep learning 

Model 

Layers 

Depth 

Convolution Parameters 

MobileNetV2 52 1×1 convolution 3.504M 

InceptionV4 22 1×1 convolution 

3×3 convolution 

43 M 

SqueezeNet 18 1×1 convolution 5MB 

3.8. Feature Extraction 

Convolution and pooling layers in all three models 

(MobileNetV2, InceptionV4, SqueezeNet) conduct feature 

extraction, and a fully connected layer, named as a softmax 

layer transforms these extracted features into the final 

output, such as classification. 

3.8.1. Convolution layer 

A convolution layer is made up of a series of numerical 

computations, such as convolution, which is a subset of 

linear transformations. Pixel measurements are stored in a 

- two-dimensional (2D) grid (vector of integers) and a 

matrix of variables called kernel, an optimizable feature 

extractor, which is applied to each digital image [40]. 

3.8.2. Pooling Layer 

A pooling layer performs a standard down-sampling 

function, reducing the in-plane dimension of the feature 

map to incorporate translational coherence to minor 

distortions and to reduce the number of future trainable 

features. It has two kinds, Max pooling and Global average 

pooling [41]. 

3.9. Classification 

Final classification of all three models is done with the 

help of a fully connected softmax layer. The softmax layer 

of SqueezeNet, MobileNetV2, and InceptionV4 has two 

outputs (cracked and non-cracked), and average pooling 

has been used for the assignment of the output class during 

training and validation. total of 1000 epochs. The transfer 

learning approach is applied. Pre-trained weights of 

models trained on ImageNet are frozen, and the last layers 

are unfrozen to make the data learn on the Pavement 

dataset. Adam optimizer is used for optimization purposes. 

4. RESULTS AND DISCUSSION 

A frequent drawback identified in the existing research 

for vision-based analysis on road/pavement structures is 

that the established techniques only considered a single 

structure, thus their capacity to generalize when tested on 

more varied data has to be verified that’s why we used a 

Kaggle dataset that had a lot of varied images. Training 

and validation of all the deep learning models i.e., 

SqueezeNet, MobileNetV2, and InceptionV4 done on the 

graphics processing unit (GPU) TitanXp, having Intel 

Xeon® CPU E5-2687W v4 @ 3.0GHz. All experiments 

are performed by creating a separate virtual environment 

using PyCharm. The batch size for training and validation 

is kept 64 images. All models were trained on 80% dataset 

with a learning rate of 0.0005 and a total of 5 epochs, 

which is further divided into 200 epochs, so combining all, 

we have a total of 1000 epochs. The transfer learning 

approach is applied. Pre-trained weights of models trained 

on ImageNet are frozen, and the last layers are unfrozen to 

make the data learn on the Pavement dataset. Adam 

optimizer is used for optimization purposes. 

4.1. Scheme 1 

Figure13 shows the overall accuracy achieved against 

each of the deep learning models in scheme 1. SqueezeNet 

has achieved an overall accuracy of 84.69%, whereas 

MobileNetV2 and InceptionV4 achieved 92.45% and 

95.10%, respectively. InceptionV4 has the highest 

accuracy as compared to both models. Figure14 shows the 

training accuracy VS training loss along with the 

validation accuracy VS validation loss of all models 

against each epoch. Initial training and validation 

accuracies are improved during each epoch, and finally, 

the highest training and validation accuracies are achieved 

at the fifth epoch. Similarly, the training and validation 
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losses of each model were low and improved in the fourth 

and fifth epochs. 

 

Figure 13. Overall Accuracy of Deep Learning Models Of 
Scheme 1 

 

Figure 14. Scheme 1 (a)Training Loss (b) Training Accuracy 
(c)Validation accuracy (d) Validation loss 

 

 

Figure 15. Intelligent Pavement Crack Confusion Matrix. 

Table 7 gives us detailed insight into how the model 

classifies each class. The Inception model has the highest 

TP (20069) and TN (20860). A model must have high TN 

and TP, then only can good classification be done. FP and 

FN need to be low, as in the inception case it is lowest 

among the other two. 

Table 7.  Confusion Matrix of Scheme 2 . 

 

Model True Positive 

(TP) 

False 

positive 

(FP) 

False Negative 

(FN) 

True 

Negative 

(TN) 

InceptionV4 20069 886 795 20860 

MobileNetV2 19,868 943 996 20803 

SqueezeNet 18797 2165 2067 19581 

 

When we train deep learning models on an augmented 

dataset, then we see significant accuracy improvements in 

all three models. Parameters mentioned in Table 8 are 

calculated using Table 7 elements. Their respective 

mathematical equations are given below, 

 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

 

(1) 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

 

(2) 

Specificity = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
 

 

(3) 

Accuracy = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

 

(4) 

 

 

If we see in detail, then it is apparent that the accuracy 

of inception model increased from 95.10% to 96.05% 

(0.95%), MobileNet v2 increased 92.54% from 95.44% 

(2.9%), and that of squeeze net increased from 84.69% to 

90.06% (5.37%) as shown in Table 8. The sensitivity and 

specificity of the three models are in the following order, 

 

𝑆𝑁𝑖𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛 > 𝑆𝑁𝑚𝑜𝑏𝑖𝑙𝑒 > 𝑆𝑁𝑠𝑞𝑢𝑒𝑒𝑧𝑒 

𝑆𝑃𝑖𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛 > 𝑆𝑃𝑚𝑜𝑏𝑖𝑙𝑒 > 𝑆𝑃𝑠𝑞𝑢𝑒𝑒𝑧𝑒 

𝑃𝑖𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛 > 𝑃𝑚𝑜𝑏𝑖𝑙𝑒 > 𝑃𝑠𝑞𝑢𝑒𝑒𝑧𝑒 

Table 8. Dataset Distribution of Scheme 2. Scheme 2 

Model Precision (P) Sensitivity 
(SN) 

Specificity 
(SP) 

Accuracy (A) 

InceptionV4 96.189% 95.771% 96.328% 96.054% 

MobileNetV2 95.226% 94.904% 95.430% 95.449% 

SqueezeNet 90.092% 89.671% 90.451% 90.068% 

Scheme 2 contained the dataset trained on the augmented 

dataset. Here, we calculated the efficiency of models based 

on the confusion matrix and classification merits. A 

confusion matrix tells us about the detailed working of a 

trained model,  as shown in Figure15. 

4.2. Model prediction 

Figure 16 shows model predictions when randomly 

selected test images from each class were given to the 

trained models. Some images show the false prediction 

against each deep learning model. Figure 17 shows the 

results of each class where the trained models had false 

predictions. The first row shows the results where the 

model has false positive predictions, and the second row 

shows the examples of false negatives predicted by the 

model. A false positive is an outcome in which the model 

forecasts the positive class erroneously. A false negative is 

an outcome in which the model forecasts the negative class 

inaccurately. 
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Figure 16. Random Prediction of Class with Confidence using 
A) InceptionV4, B) MobileNetV2, and C) SqueezeNet Scheme 

2. 

 

Figure 17. Samples Having False Positive (FP) and False 
Negative (FN) Scheme 1. 

 

4.3. Why inception v4 performs better? 

Inceptionv4 is a deep neural network that trains deeper  

networks, increases the accuracy. To make a good model, 

we first have to make sure that its performance on the 

training data is good. While designing a CNN, the filter 

size is a very deciding factor. Inception uses 1 X 1,3 X 3, 5 

X 5 filters, a convolution layer, and a pooling layer, and 

stacks all the outputs together. To reduce computations, 1 

X 1 convolution is applied before 3 X 3 and 5 X 5 

convolutions. The inception model is made up of these 

inception blocks repeated at different locations, as well as 

a fully linked layer and a SoftMax layer. This thing 

increases its accuracy and performance [33]. That’s why 

inceptionv4 accuracy is higher other two neural 

SqueezeNet and Mobilenetv2. Figure 18 shows the 

operational accuracy of various deep learning models 

trained on ImageNet. Inception v4 tops all of them 

significantly. 

4.4. Advantages 

Pavement cracks can be caused by an inadequately 

structured joint, deformation of the asphalt layer, microcracks 

showing up from a foundational coating, or separation 

caused by defective activity. As a result, early crack 

identification and early restoration of cracked pavement 

can lower the economic cost of pavement repair while also 

ensuring the welfare of cars and drivers using the roadway. 

4.5. Comparative Analysis 

Li et al achieved 94% accuracy [42] and A. Ahmadi et 

al 93.86% [20], but our proposed methodology pre-

processing + InceptionV4 achieved 95.10%. Du et al. 

achieved 73.64% with Yolo [27], and our pre-processing 

SqueezeNet achieved 84.69% accuracy. Safaei et al had 

80% accuracy [28] while Lei Zhang et al obtained 86.96% 

[19] and our pre-processing + MobileNetV2 achieved 

92.45% accuracy. Our proposed work surpasses them all 

in accuracy measurement. Detailed analysis is shown in 

Table 9. 

 
 

Figure 18. Operationals performed vs accuracy for multiple 
deep learning models [33] 

5. CONCLUSIONS & RECOMMENDATIONS 

The growing demand for efficient and autonomous 

roadway crack detection underscores the importance of 

developing robust and accurate classification models. In 

this study, we introduced CrackNet, a custom-designed 

DL framework capable of classifying pavement images as 

either cracked or non-cracked. To assess its effectiveness, 

we implemented and evaluated three variants i.e., Sqz-

CrackNet, Mob-CrackNet, and Incep-CrackNet each 

optimized for different levels of efficiency and feature 

extraction capability. All three models demonstrated 

superior classification accuracy, significantly 

outperforming their respective baseline architectures. 

These performance gains can be attributed to the careful 

integration of model-specific architectural enhancements, 

as well as the implementation of a comprehensive data 

augmentation pipeline and preprocessing techniques to 

improve generalizability and address class imbalance. 

Among the proposed variants, Incep-CrackNet achieved 

the highest accuracy, showing promise for real-world 

deployment in edge environments. 
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Table 9. Comparison of  State-of-The-Art  Versus Our 
Approach. 

 

Contribution Dataset Methodology Accuracy 

[42] 3D pavement 

images 

CNN 94% 

[28] Midwest 

Transportation 

Center (MTC) 
Dataset 

Image Processing 

techniques 

 

80% 

[27] PD images 
Dataset 

Yolo 73.64% 

[19] Self-500 

pavement images 

Deep Convolutional 

Neural Network 
(DCNN) 

86.96% 

[20] 400 samples 

captured in Tehran 

urban area 

Integrated machine 

learning model 

93.86% 

Proposed Work: 

Original Dataset 
 

 

 
 

SDNET2018 

SqueezeNet 84.69% 

MobileNetV2 92.45% 

InceptionV4 95.10% 

Proposed Work: 

Augmented 
Dataset 

SqueezeNet 90.068% 

MobileNetV2 95.449% 

This research can be extended to enable object-level 

crack detection and localization using advanced versions 

of the YOLO (You Only Look Once) framework. This will 

not only enhance the system’s capability to detect the 

presence of cracks but also identify their specific locations 

and dimensions. The most effective model will be 

deployed on the OAK-D (Open-Source AI Kit–Depth) 

platform to develop a portable, real-time crack detection 

tool suitable for field use by road maintenance personnel. 

Additionally, fine-tuning of the YOLO models will be 

explored to further improve detection accuracy under 

diverse environmental and surface conditions. 
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