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InceptionV4, ’ of road conditions. We introduced CrackNet, a custom-designed deep-learning classification

MobileNet, framework for pavement images. CrackNet combines pre-trained backbone feature extractors

SqueezeNet (MobileNetV2, InceptionV4, SqueezeNet) with a lightweight classifier head and a comprehensive
preprocessing + augmentation pipeline to improve generalizability and address class imbalance.
We evaluated three CrackNet variants (Sqz-CrackNet, Mob-CrackNet, Incep-CrackNet), each
distinguished by its backbone, and found Incep-CrackNet achieved the highest accuracy of
96.05%, surpassing the Mob-crackNet and Sqz-crackNet, which attained accuracies of 95.44%
and 90.06%, respectively. These findings underscore the effectiveness of the proposed deep
learning framework in accurately detecting pavement cracks, representing a significant
advancement over traditional detection methods.
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1. INTRODUCTION fatigue cracks [1].

The key component influencing road effectiveness is
pavement deterioration. The identification of pavement
deterioration in a timely and efficient manner is a critical
element in pavement care. Cracks are the first sign of
several forms of pavement issues. Pavement cracks not
only degradepavement look and driving convenience, but
they may also readily spread and create extensive
destruction to the pavement, reducing ultimate operational
productivity anddurability [2,3]. As a result, early crack

Generally, the modes of transportation are road, rail,
water, and air. The transport system of Pakistan is
primarily dependent on road transport, which makes up
90% of nationalpassenger traffic and around 96 % of freight
movement. Overthe past several years, road traffic has grown
day by day which resulting in severe road accidents and
impacting the efficiency ofthe road. Pakistan is gifted with
a naturally geo-strategic location. As it is at the crossroads
of Asia with China, this makes it an attractive and shortest
route for transportation tothe Central Asian Republic.
Road transportation is the backbone of the economy of
Pakistan because imports and exports are done by road.
And other countries also use the roads of Pakistan for their
transport of goods. Friction between the road and vehicle,
extreme weather conditions, and material aging impact the
efficiency of roads. This is manifested in theform of cracks
on the road. A crack is a condition of the roadthat occurs
when concrete is completely or incompletelyseparated into
two parts. The major causes of cracks on roadsare water

identification and early management of cracked pavement
can lower the economic cost of pavementrestoration while
also ensuring the safety of cars and drivers using the
roadway. That’s why it is crucial to measure pavement
crack type detection and develop repair and maintenance
strategies to improve the usability of roads and public
safety. Detecting road cracks in Pakistan roads helps
vehicles move smoothly without getting stuck in these
cracks. Assessing the quality of road surfaces by detecting
road cracks is beneficial to reduce maintenance costs. It is
vital to keep roads in good condition for driving safety

lati il spill ing shrink trippi . S .
accumulation, oil spills, drying shrinkage, stripping, and assurance.And it is mandatory to identify cracks timely
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manner for their repair. In the past, a lot of work is done
by researchers in pavement crack detection by using a deep
learning approach,but still, there is aneed for improvement.
In the current study,we have implemented a model on raw
images taken from {4]. We normalized these raw images
and trained 80% dataset on three deep learning models,
MobileNet V2, Inception V4, and SqueezeNet, and
achieved higheraccuracy than found in the literature.

2. LITERATURE REVIEW

DL-based solutions have been successfully applied in
multiple domains, including disease detection in humans
[5-11], plant disease identification [12], [13], and various
multidisciplinary applications such as UAV-based object
detection, wearable sensing, and intelligent systems [14—
18]. Similarly, DL techniques are also being used for the
early crack detection and classification. In [3], Otsu’s
thresholding technique is used for programmed break
identification and arrangement framework for substantial
surface pictures, and their fogginessis taken out by utilizing
a Wiener channel. Wavelet change and Singular Value
Decomposition (SVD) are utilized for theremoval of non-
uniform light in pictures. An arbitrary backwood
calculation is chosen to characterize the pictures into
explicit sorts i.e., minor, moderate, serious, and complex
breaks. In [2], the authors proposed a mechanized road
crack recognition framework dependent onYOLO v2. The
dataset comprised 9,053 pictures with avehicle-mounted
cell phone. These pictures were partitionedinto classes
named wheel mark part, development joint imprint,
equivalent stretch, development joint imprint, Partial
asphalt, in general asphalt, Rutting, knock, pothole,
detachment, crosswalk obscure, and white line obscure. In
19], investigators addressed a profound learning-based
strategy for road break recognition by using ConvNet. A
Dataset of 500 pictures is gathered at the TempleUniversity
grounds by utilizing a cell phone. The model achieved
0.8696 accuracy and 0.8965 F1 scores. In [20], the authors
present an incorporated Al model for programmed bridge
crack recognition and groupingin metropolitan regions is
done by using division, noise reduction, highlight
extraction, and break arrangement. The dataset was
gathered from various breaks in Tehran metropolitan
region. The proposed crossbreed model is a blend of
decision trees and SVM, which achieved 93.86%
accuracy. In [21], the authors classified different street
asphalt surface breaks. This input image was of
1536x2048 pixels, obtained by an optical gadget. In [22],
researchers addressed a strategy for recognizingpixel-level
street breaks. The dataset was gathered by discovery
cameras. The proposed convolutional encoder-decoder
network utilized ResNet-152, and the deconvolution
strategies of SegNet, FCN, and ZDNet. The outcomes
show that the proposed technique is ideal for detecting

breaks in discovery pictures at the pixel level. In [1], a
computerized and smart system is used for break location.
The dataset is first preprocessed and then features are
extracted using convolutional neural networks on
MATLAB with a precision rate of 90%. In [23], the
authors presented a novel mechanized break recognition
system using the STRUM (spatially tuned strong
multifeatured) classifier. By utilizing Al (Artificial
Intelligence), the need to tune boundaries mechanically is
eliminated. Element calculation incorporates the scale-
spaceof the neighborhood and highlights the size of the
break. STRUM classifier achieves 69% precision. In [24],
researchers presented a break recognition strategy witha
limited quantity of datasets by using contrast and the
conventional edge location techniques. In [25], experts
presented a learning model based on the YOLOv4 tofind
connecting breaks by an automated flying vehicle, UAV
(unmanned aerial vehicle). [26] provided an extensive
overview of advancements in asphalt pavement
technologies,  emphasizing  sustainability,  smart
diagnostics, and data-driven practices. Their insights help
frame the importance of integrating intelligent systems
such as CrackNet into modern pavement assessment
workflows. [27] introduced a YOLO-based deep learning
architecture for detecting and classifying pavement
distress types. Their success in applying real-time object
detection supports the viability of lightweight yet accurate
networks in field-ready applications. [28] developed an
image processing pipeline based on crack pixel density
that effectively quantifies and classifies pavement cracks
with high reliability. Their work demonstrates how
structural metrics can enhance interpretability and
accuracy in classification tasks. This strategy has low
identification productivity and high work cost. The detailed
comparison of literature is shown in Table 1.

2.1. Paper contribution

Pavement Management Systems (PMS) are gaining
importance in pavement surveying, monitoring, and
restoration. To enhance pavement management, an
increasing number of transportation agencies are creating
andenhancing pavement management systems. Pavement
crack analysis, which comprises crack identification and
detection of crack progression, is an important and
necessary function in PMS. Many transportation
authorities are now accumulating pavement image data on
a regular and frequentbasis. As a result, this research
proposed a method for analyzing existing cracks that uses
previous data as a benchmark. The contributions are listed
below,

Comprehensive  literature  review of  existing
methodologies. Found research gaps and where
improvements can be made.

The authors presented a method for utilizing previous
crack records as a standard for pavement crack evaluation,
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which may considerably improvepavement crack analysis
effectively.

The network makes full use of the semanticinformation
of hierarchical convolution features andis very effective
for crack detection under a complex scene.

Detailed comparison of results achieved in balancedvs
imbalanced datasets.

Table 1. Comparison of Previous Studies.

Research Problem Technique Results
Used
[3] Review and analysis of Image Break
crack detection and processing and | recognition and
classification based on Machine characterization
crack types learning methodfor
common
foundationare
effective and
widely
used
[2] Automated road crack DCNN Developed a
detection dataset using
google road
[19] Road crack detection DCNN Accuracy:
86.96%
[20] Automated road crack Integrated Accuracy:
detection andclassification|machinelearning] 83.86%
[21] Crack detection and Image -
characterization processing
[22] Road crack detection Encoder- Results shows
decoder network| the proposed
technique is
ideal for
detecting breaks
in pictures at the
pixel level
[1] Bridge crack detection CNN Accuracy: 90%
[23] Automated road crack Machine -
detection learning and

Computer vision

[24] Bridge crack detection Image Accurately
processing  [identify cracksin|
collected images
[25] Bridge crack detection [YOLO-V4-FPM| -
[28] | Pavement crack detection | Crack pixel Effectively
and classification density-based | segments and
image classifies cracks
processing  |using automated
pipeline
[26] Advancement in asphalt Review of Highlights
pavement pavement design| recent
and maintenance| innovations,
tools emphasizing
sustainability
and smart
diagnostics

3. MATERIALS AND METHODS

Roads are considered important infrastructure for every
country; therefore, special care is needed to detect these
cracks before a major loss. Deep learning has proven as the
most powerful tool for visual recognition and produces the

highestaccuracies as compared to the traditional machine
learning approach. Figure 1 shows the block diagram of
our research methodology, where the dataset of the cracks
in pavement is first normalized, then fed into three deep
learning models i.e., SqueezeNet, MobileNetV2, and
InceptionV4, and finally classified by their softmax layer,
which is a fully connected layer, as cracked and non-
cracked images.

3.1. Dataset Distribution

Structural defect (SDNET2018) is an annotated dataset
used for Al-based crack detection training and validation. The
collection includes 56,000 pictures of cracked and non-
cracked bridges, pavement and wall samples as shownin
Figure 3, Figure 4, and Figure 5, respectively. This dataset
comprises fractures ranging in size from0.06mm to 25mm,
allowing us to identify the tiniest and deepest apparent
fissures. SDNET2018 images were shot with a 16-
megapixel Nikon camera at a working distance of 500 mm
without zoom. The ISO was set to 125, and the image
resolution was 4068 x 3456 px. The surface lighting varied
between 1500 and 3000 Ix. Figure 3-5 shows the kind of
imagesthis dataset contains.

Each image in the dataset is divided into 256x256 pixels
and covers a corporeal region of around 1000 x 850 mm.
Cracked and non-cracked categories. The pavement
images have been acquired from the roads and the
sidewalks, in which2608 images contain cracks, while
21726 images belong to the non-cracked category. Images
of walls and pavements were shot on the Utah State
University campus. The dataset has been acquired from
Kaggle, which is publicly available for researchers [4].

3.2. Data Augmentation

We have augmented cracked images (only) eight times,
as shown in Table 2 and the augmented samples are shown
in Figure 6.

Table 2. Augmented Dataset.

Sr. Class Images After Augmentation
No
1. Crack 2,608 x 8=20,864
2. Non-Crack 21,726
Total 42,590

3.3. Preprocessing

Raw images are preprocessed for each model. The
following steps are adopted to obtain the required pre-
processed images.

-76 -



Saeed and Raza, Intelligent Methods in Engineering Sciences 4(3): 74-84, 2025

Conv Pooling Conv Pooling Flattening Softmax

Crack

Figure 3. Crackled and non-cracked bridge deck images

@

| I
Dataset Features Extraction Classification
- SqueezeNet -- MobileNetV2 -- InceptionV4 I

Figure 1. Block Diagram of Autonomous Crack Detection.
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Bridge deck Wall Pavement

Figure 2. SDNET2018 Dataset Distribution.

(b)

(b)
Figure 5. Crackled and non-cracked wall images.

3.3.1. Resize

The input images were of size 256 x 256, which were
resized to 299 x 299 for InceptionV4 (shown in Figure 7)
while 224x224 for MobileNetV2 and SqueezeNet as
shown in Figure 8. Figure 9 shows the individual cracked
and non-cracked raw images split into respective red,
green, and blue channels.

E T
EEEw

Figure 6. Image Augmentation a) Original image b) 180-degree
rotated c) 90-degree left rotated d) 90-degree right rotated e) 15-
degree right rotated f) 30- degree right rotated g) 25-degree
right rotated h) 15-degree left rotated.

(b)

Figure 4. Crackled and non-cracked pavement images.
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@ (b)

Figure 7. Resized 299x299 image for InceptionV4 (a) Cracked
(b) Non-cracked.

(@) (b)

Figure 8. Resized 224x224 image for MobileNetV2 and
SqueezeNet (a) Cracked (b) Non-cracked.

Figure 9. RGB channels of (a) Cracked and (b) Non-cracked
images.

3.3.2. Normalization

Normalization is done because, during the training
phase,the model multiplies weights and adds to biases.
These initialinputs form activations, which we will then
backpropagate using gradients to train the model. Here,
each feature must have a comparable range so that
gradients don't spiral out of control. Inputs with big
decimal numbers can interrupt or impede the learning
process in deep learning models, which process inputs
with modest weight values. As a result, normalizing the
pixel values so that each pixel value has a value between 0
and 1 is recommended in practice. The aim of
normalization also comes from calibrating the diverse
pixel intensities into a normal distribution, which improves
the image's appearance for the visualizer [29].

Resized images are normalized into a fixed mean of
[0.485, 0.456, 0.406] and standard deviation of [0.229,
0.224,0.225] for RGB images having red, green, and blue

channels. This means an STD was calculated by using
ImageNet [30], which contains 14 million images from
1000 classes, as done. Figure 9 and Figure 10 show
cracked and non-cracked images before and after
Normalization. The pixel intensities for cracked images
before normalization ranged from 45 to 220, and after
normalization, 0.2-0.8. Non-cracked image in Figure 11
shows 25-to-170-pixel values, and after normalization it
shows 0 to 0.6.

3.4. Dataset Distribution

The 80% dataset has been randomly separated for
training purposes, while 20% is reserved for validation, as
shown in Tables 2 and 3. The original data + trained model
is called Scheme 1, and the augmented data + trained
model is called Scheme 2.

Table 3. Dataset Distribution of Scheme 1.

Class Images Training Validation
Crack 2,608 2086 522
Non- Crack 21,726 17,020 4706
Total 24,334 19,106 5,228

Table 4. Dataset Distribution of Scheme 2.

Class Images Training Validation
Crack 20,864 16,691 4,173
Non- Crack 21,726 17,020 4,706
Total 42,590 33,711 8,879

Distribution of pixels after Nermalization

A

pixel ua\ws

(a)y Distribution of pixels before Normalization

oors
00150
g 00125
£ o0
£ ooors
B 00050
o025
0.0000

150
Pixel values

relativ \n-] ncy

Figure 10. Cracked image before and after normalization.

of pixels after

relative frequency

0005

0000

Figure 11. Non-cracked image before and after normalization.

3.5. Transfer Learning

Transfer learning is a machine learning approach in which
a model that has been built for a certain task is utilized
againas the reference basis for a second task model [31] as
shown in Figure 12.

In this article, we utilized trained base networks on a
dataset named as ImageNet [30] such as Mobilenet v2
[32], Inception v4 [33] and SqueezeNet [34] and a task
(classification of 1000 classes), and then reassigned or
transferred the learning characteristics to a second target
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network to be trained in a desired dataset- SDNET2018
[35],[4] and task (crack detection and classification). This
approach's utilization succeeded in classifying pavement

Module 1
Distribution

cracks because the models were trained on generic
attributes of 1000 classes, which means that they are suited
for both the base and the target tasks classification.

Classification

|
| |
' |
' |
I —_— | " Deep learning ) | |
| &= = { I 2 Classifier / lassificatio
| — | | ImageNet l"’ using untrained - Head —PJ 1000 classes | i'l“i"iﬂl_'”ﬂ 5
Train Databin | Jarabasc model \ | |
D : —
: / Bire) I i | : Cracked |
—_— | ¢ ledee Transfer . e g |
( ——— 1 Knowle d,'.{( 'l:1a115t4,1 Prsdichion : /
: \T;:; [)al;;nin : ‘ - } : 5 P :
209 Kaggle ! (CPreitrined Dee ep | ‘Model trained Hlate ) Non- :
ol Dataset (80%)-» learning model . on test data | _eracked |

l_;_r;_l

Module 2

| ‘ || &
! - I ,,,,,,,,,,,,,,,,,,,,,,
|

Figure 12. Block Diagram of Transfer learning Approach [31].

3.6. CrackNet Architecture

CrackNet is the task-specific classifier head used on top
of the frozen/pre-trained backbones. The head comprises a
global average pooling layer followed by a fully connected
layer and a two-unit softmax output for binary
classification (cracked vs non-cracked). During transfer
learning we freeze the backbone (pre-trained on
ImageNet) and unfreeze the final layers of the backbone
and the CrackNet head for target-task fine-tuning. The
same CrackNet head is used across the three variants; Sqz-
CrackNet, Mob-CrackNet and Incep-CrackNet refer only
to the backbone choice.

MobileNetV2: The MobileNetV2 deep learning model
is used as a backbone network in this study. The
architectural details of MobileNetV2 can be found in [32].

InceptionV4: The complete architecture of InceptionV4,
and its details can be referred from [33].

SqueezeNet: SqueezeNet, where each building block is
known as the fire module, which is one squeezed layer,
and one expanded layer combined to form a fire block. This
model has four fire blocks followed by a convolution and
pooling layer. Detailedarchitecture layers and blocks can
be seen for further understanding in [34].

3.7. Hyperparameters (HP) Selection and Tuning

Here, each input images are resized according to the
model requirement and then normalized into mean and
standard deviation calculated by using ImageNet [30]. The
tuning procedure evaluated a compact set of candidate
values for each hyperparameter and selected values that (i)
produced stable, monotonic decreases in validation loss,
and (ii) achieved high validation accuracy without evident
overfitting. The candidate values and final choices are
summarized in Table 5. Specifically:

3.7.1. Batch size (BS)

The number of training instances forwarded to the
networks is referred to as the batch size. A training dataset

can be broken down into one or more batches. The learning
technique is known as batch gradient descent when all
training samples are supplied in a single batch. The
learning technique is known as stochastic gradient descent
when the BS is one. The learning algorithm is known as
mini-batch gradient descent when the BS is greater than
one but less thanthe training size. The BS’s used in mini-
batch gradient descent are 32, 64, and 128. The larger the
batch size, the more accurate the network. With a power of
2, the BS rangesfrom 1 to 1024 [36]. Increasing the batch
sizereduces model performance by causing it to gravitate to
sharpminimizers of the training function [37]. The batch
size is determined by the application; after extensive
research, here we decided to use BS of 64.

3.7.2. Learning Rate

One of the most essential factors used to optimize the
models is the learning rate. It reduces error by adjusting
network weights. Choosing a learning rate that is too low
andan LR that is too high might harm model performance.
A low LR will result in little updates to the network
weights, slowing down the training process, whereas a
large LR will result in divergent behavior in the error.
Training should begin with a high LR since random
weights are far from idealat the outset, and learning rates
will fine-grained the networkweights by reducing their
value overtraining. The approach provides could begin
with a large value, such as 0.5, and thenprogress to lower
values such as 0.05, 0.005, and so on. [36] recommended
using tiny LR for bigger issues [37,38], which is why we
selected 0.0005 LR here.

3.7.3. Epochs

The number of epochs indicates how many times the
trainingdataset has been traversed. Every epoch indicates
that the training sample can modify the model's internal
parameters. There may be one or more batches. The
number of epochs might be somewhere between 0 and
infinity. Hundreds of thousands of epochs are often
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chosen. This enables the network to effectively reduce
errors. A designer must study the error and accuracy
learning curves to identify the optimalepoch value. These
curves can help in assessing the model's learning states,
such as over-learned, under-learned, or training-suitable
[36]. We used a total of 5 epochs after repeated testing,
which was then divided into 200 epochs for a total of 1000
epochs.

3.7.4. Optimization

The Adam optimizer (AO) is a combination of two
gradient descent algorithms: the gradient descent
algorithm (GDA) and Root Mean Square Propagation
(RMSP). AO builds on the attributes or positive
characteristics of the priortwo systems to produce a more
optimum gradient descent. Inthis scenario, the gradient
descent rate is tuned so that there is little variation when it
reaches the global minimum while making big steps to
avoid the local minimum obstacles alongthe way. As a
consequence, using the advantages of the priorprocedures
to efficiently achieve the global minimum [39]. The graph
in Figurel2 clearly shows how AO surpasses the other
optimizers in terms to training cost (minimal) and
performance by a significant margin (high).

Table 5. Hyperparameter Search Summary And Final Choices.

Hyperparameter Candidate Values Selected Value
(Used in Study)
Batch size {32, 64, 128} 64
Learning rate {le-3, 5e-4, le-4, Se-4
Se-5}
Optimizer {SGD, Adam} Adam
Max epochs (max) up to 1000 up to 1000 (best
checkpoint used;
best epoch = 5)

Table 6. Deep Learning Models Comparison

Deep learning Layers Convolution Parameters
Model Depth
MobileNetV2 52 1x1 convolution |  3.504M
InceptionV4 22 1x1 convolution | 43 M
3%3 convolution
SqueezeNet 18 1x1 convolution | 5SMB

3.8. Feature Extraction

Convolution and pooling layers in all three models
(MobileNetV2, InceptionV4, SqueezeNet) conduct feature
extraction, and a fully connected layer, named as a softmax
layer transforms these extracted features into the final
output, such as classification.

3.8.1. Convolution layer

A convolution layer is made up of a series of numerical
computations, such as convolution, which is a subset of
lineartransformations. Pixel measurements are stored in a
- two-dimensional (2D) grid (vector of integers) and a
matrix of variables called kernel, an optimizable feature
extractor, which is applied to each digital image [40].

3.8.2. Pooling Layer

A pooling layer performs a standard down-sampling
function, reducing the in-plane dimension of the feature
map to incorporate translational coherence to minor
distortions and to reduce the number of future trainable
features. It has two kinds, Max pooling and Global average
pooling [41].

3.9. Classification

Final classification of all three models is done with the
help of a fully connected softmax layer. The softmax layer
of SqueezeNet, MobileNetV2, and InceptionV4 has two
outputs (cracked and non-cracked), and average pooling
has been used for the assignment of the output class during
training and validation. total of 1000 epochs. The transfer
learning approach is applied. Pre-trained weights of
models trained on ImageNet are frozen, and the last layers
are unfrozen to make the data learn on the Pavement
dataset. Adam optimizer is used for optimization purposes.

4. RESULTS AND DISCUSSION

A frequent drawback identified in the existing research
for vision-based analysis on road/pavement structures is
that the established techniques only considered a single
structure, thus their capacity to generalize when tested on
more varied data has to be verified that’s why we used a
Kaggle dataset that had a lot of varied images. Training
and validation of all the deep learning models i.e.,
SqueezeNet, MobileNetV2, and InceptionV4 done on the
graphics processing unit (GPU) TitanXp, having Intel
Xeon® CPU E5-2687W v4 @ 3.0GHz. All experiments
are performed by creating a separate virtual environment
using PyCharm. The batch size for training and validation
is kept 64 images. All models were trained on 80% dataset
with a learning rate of 0.0005 and a total of 5 epochs,
which is further divided into 200 epochs, so combining all,
we have a total of 1000 epochs. The transfer learning
approach is applied. Pre-trained weights of models trained
on ImageNet are frozen, and the last layers are unfrozen to
make the data learn on the Pavement dataset. Adam
optimizer is used for optimization purposes.

4.1. Scheme 1

Figurel3 shows the overall accuracy achieved against
each of the deep learning models in scheme 1. SqueezeNet
has achieved an overall accuracy of 84.69%, whereas
MobileNetV2 and InceptionV4 achieved 92.45% and
95.10%, respectively. InceptionV4 has the highest
accuracy as compared to both models. Figure14 shows the
training accuracy VS training loss along with the
validation accuracy VS validation loss of all models
against each epoch. Initial training and validation
accuracies are improved during each epoch, and finally,
the highest training and validation accuracies are achieved
at the fifth epoch. Similarly, the training and validation
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losses of each model were low andimproved in the fourth
and fifth epochs.

95.10%
92.45%
i‘ﬁg‘% |
SqueezeNet
MobileNetV2

InceptionV4

Figure 13. Overall Accuracy of Deep Learning Models Of
Scheme 1

(a)"Saueeze Net wMobileNetV2 « Inception¥4  (b) = Squeeze Net = MobileNetV2 = InceptionV4
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Figure 14. Scheme 1 (a)Training Loss (b) Training Accuracy
(c)Validationaccuracy (d) Validation loss

True Positive (TP): True Positive (TP):

Reality: Cracked Reality: Non-Cracked

Model: "Cracked." Model: "Cracked."

Outcome: Pavement is cracked. Outcome: Construction material
bought for nothing.

False Negative (FN): True Negative (TN):

Reality: Cracked

Model: "Non-Cracked."
Outcome: Pedestrians  face
problems.

Reality: Non-Cracked

Model: "Non-Cracked."
Outcome: Pavement is not
cracked.

Figure 15. Intelligent Pavement Crack Confusion Matrix.

Table 7 gives us detailed insight into how the model
classifies each class. The Inception model has the highest
TP (20069) and TN (20860). A model must have high TN
and TP, then only can good classification be done. FP and
FN need to be low, as in the inception case it is lowest
among the other two.

Table 7. Confusion Matrix of Scheme 2 .

Model |True Positive] False [False Negative| True
(TP) positive (FN) Negative

(FP) (TN)

InceptionV4 20069 886 795 20860

MobileNetV2| 19,868 943 996 20803

SqueezeNet 18797 2165 2067 19581

When we train deep learning models on an augmented
dataset, then we see significant accuracy improvements in

allthree models. Parameters mentioned in Table 8 are
calculated using Table 7 elements. Their respective
mathematical equations are given below,

Accuracy = S L\ — ey
TP+TN+FP+FN

Precision = % 2

Specificity = TNTJIrVFP )

Accuracy = TPFP “)

If we see in detail, then it is apparent that the accuracy
of inception model increased from 95.10% to 96.05%
(0.95%), MobileNet v2 increased 92.54% from 95.44%
(2.9%), and that of squeeze net increased from 84.69% to
90.06% (5.37%) as shown in Table 8. The sensitivity and
specificity of the three models are in the following order,

SNinception > SNmobile > SNsqueeze
SPinception > SPmobile > SPsqueeze
Pinception > Pmobile > Psqueeze

Table 8. Dataset Distribution of Scheme 2. Scheme 2

Model Precision(P) | Sensitivity | Specificity [Accuracy(A)
(SN) (SP)
InceptionV4 | 96.189% 95.771% 96.328% 96.054%
MobileNetV2| 95.226% 94.904% 95.430% 95.449%
SqueezeNet | 90.092% 89.671% 90.451% 90.068%

Scheme 2 contained the dataset trained on the augmented
dataset.Here, we calculated the efficiency of models based
on the confusion matrix and classification merits. A
confusion matrix tells us about the detailed working of a
trained model, as shown in Figurel5.

4.2. Model prediction

Figure 16 shows model predictions when randomly
selected test images from each class were given to the
trained models. Some images show the false prediction
against each deep learning model. Figure 17 shows the
results of each class wherethe trained models had false
predictions. The first row shows the results where the
model has false positive predictions, and thesecond row
shows the examples of false negatives predicted by the
model. A false positive is an outcome in which the model
forecasts the positive class erroneously. A false negative is
an outcome in which the model forecasts the negative class
inaccurately.
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Non-Cracked, confidence: ©.757979  Non-Cracked, confidence: ©.729027

Cracked, confidence: ©.996956

150

Figure 16. Random Prediction of Class with Confidence using
A) InceptionV4, B) MobileNetV2, and C) SqueezeNet Scheme
2.

Crack Non-Crack Crack Non-Crack Crack Non-Crack

MobileNetV2

InceptionV4

SqueezeNet

Figure 17. Samples Having False Positive (FP) and False
Negative (FN) Scheme 1.

4.3. Why inception v4 performs better?

Inceptionv4 is a deep neural network that trains deeper
networks, increases the accuracy. To make a good model,
wefirst have to make sure that its performance on the
training data is good. While designing a CNN, the filter
size is a verydeciding factor. Inceptionuses 1 X 1,3 X 3,5
X 5 filters, a convolution layer, and a pooling layer, and
stacks all the outputs together. To reduce computations, 1
X 1 convolution is applied before 3 X 3 and 5 X 5
convolutions. The inceptionmodel is made up of these
inception blocks repeated atdifferent locations, as well as
a fully linked layer and a SoftMax layer. This thing
increases its accuracy and performance [33]. That’s why
inceptionv4 accuracy is higher
SqueezeNet and Mobilenetv2. Figure 18 shows the

other two neural

operational accuracy of various deep learning models
trained on ImageNet. Inception v4 tops all of them
significantly.

4.4. Advantages

Pavement cracks can be caused by an inadequately
structured joint, deformation of the asphalt layer, microcracks
showing up from a foundational coating, or separation
caused by defective activity. As a result, early crack
identification and early restoration of cracked pavement
can lower the economic cost of pavement repair while also
ensuring the welfare of cars and drivers using the roadway.

4.5. Comparative Analysis

Li et al achieved 94% accuracy [42] and A. Ahmadi et
al 93.86% [20], but our proposed methodology pre-
processing + InceptionV4 achieved 95.10%. Du et al.
achieved 73.64% with Yolo [27], and our pre-processing
SqueezeNet achieved 84.69% accuracy. Safaei et al had
80% accuracy [28] while Lei Zhang et al obtained 86.96%
[19] and our pre-processing + MobileNetV2 achieved

92.45% accuracy. Our proposed work surpasses them all
in accuracy measurement. Detailed analysis is shown in
Table 9.

Inception-v4

Inception-v3

Inception-v4
80
Inception-v3 ‘ ResNet-152
ReSNEt-50 |
75 l ResNet-101

VGG-16 VGG-19

ResNet-34

£ 70 ResNet-18
> .
3 W'Y GooglLeNet Inception-v1
5 EN
3 65
'g‘ © BN-NIN
F 60 5M 35M 65M 95M 125M 155M
BN-AlexNet
55 AlexNet
50
0 5 10 15 20 25 30 35 40

Operations [G-Ops]

Figure 18. Operationals performed vs accuracy for multiple
deep learning models [33]

5. CONCLUSIONS & RECOMMENDATIONS

The growing demand for efficient and autonomous
roadway crack detection underscores the importance of
developing robust and accurate classification models. In
this study, we introduced CrackNet, a custom-designed
DL framework capable of classifying pavement images as
either cracked or non-cracked. To assess its effectiveness,
we implemented and evaluated three variants i.e., Sqz-
CrackNet, Mob-CrackNet, and Incep-CrackNet each
optimized for different levels of efficiency and feature
extraction capability. All three models demonstrated
significantly

superior classification

outperforming their respective baseline architectures.

accuracy,

These performance gains can be attributed to the careful
integration of model-specific architectural enhancements,
as well as the implementation of a comprehensive data
augmentation pipeline and preprocessing techniques to
improve generalizability and address class imbalance.
Among the proposed variants, Incep-CrackNet achieved
the highest accuracy, showing promise for real-world
deployment in edge environments.
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Table 9. Comparison of State-of-The-Art Versus Our
Approach.

Contribution Dataset Methodology Accuracy
[42] 3D pavement CNN 94%
images
[28] Midwest Image Processing
Transportation techniques 80%
Center (MTC)
Dataset
[27] PD images Yolo 73.64%
Dataset
[19] Self-500 Deep Convolutional |  86.96%
pavement images| NeuralNetwork
(DCNN)
[20] 400 samples Integrated machine | 93.86%
captured inTehran|  learning model
urban area
Proposed Work: SqueezeNet 84.69%
Original Dataset
MobileNetV2 92.45%
SDNET2018
InceptionV4 95.10%
Proposed Work: SqueezeNet 90.068%
Augmented
Dataset -
MobileNetV2 95.449%

This research can be extended to enable object-level
crack detection and localization using advanced versions
of the YOLO (You Only Look Once) framework. This will
not only enhance the system’s capability to detect the
presence of cracks but also identify their specific locations
and dimensions. The most effective model will be
deployed on the OAK-D (Open-Source Al Kit—Depth)
platform to develop a portable, real-time crack detection
tool suitable for field use by road maintenance personnel.
Additionally, fine-tuning of the YOLO models will be
explored to further improve detection accuracy under
diverse environmental and surface conditions.
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